
MOPL: A Multi-Modal Path Planner for Generic Manipulation Tasks

Sören Jentzsch, Andre Gaschler, Oussama Khatib and Alois Knoll

Abstract— For intelligent robots to solve real-world tasks,
they need to manipulate multiple objects, and perform di-
verse manipulation actions apart from rigid transfers, such
as pushing and sliding. Planning these tasks requires discrete
changes between actions, and continuous, collision-free paths
that fulfill action-specific constraints. In this work, we propose
a multi-modal path planner, named MOPL, which accepts
generic definitions of primitive actions with different types of
contact manifolds, and randomly spans its search trees through
these subspaces. Our evaluation shows that this generic search
technique allows MOPL to solve several challenging scenarios
over different types of kinematics and tools with reasonable
performance. Furthermore, we demonstrate MOPL by solving
and executing plans in two real-world experimental setups.

I. INTRODUCTION

Realistic manipulation problems with multiple objects
cannot be solved in a hierarchical search: Motion paths that
push an object are sparse in the robot’s configuration space,
must fulfill geometric constraints, and cannot be undone.
While planning a sequence of manipulation actions with
movable objects can be seen as a generalization of classical,
collision-free path planning, it is a computationally harder
problem [1]: Movable objects are obstacles themselves, they
cannot move on their own, but must rather be transported
through paths that are sparse and lower in dimensionality
than the configuration space. Objects that are not transported
must be placed on support surfaces, which are again lower-
dimensional manifolds. In the early days of the Handey robot
[2], it was already realized that manipulation may require a
sequence of primitive actions with re-grasping.

Our proposed algorithm for multi-modal path planning
(abbreviated, MOPL) allows generic definitions of manipula-
tion primitives for serial kinematics, including but not limited
to rigid transfers, stable pushes, and sliding motions. MOPL
respects the subspaces defined by these actions, and is built
upon a bidirectional rapidly-exploring random tree (RRT),
which spans a search tree from both the initial configuration
and the goal. In this work, the goal can also be defined as
a goal region or a whole subspace, allowing for arbitrary
configuration of certain components of the search space. The
edges of the search trees represent discrete modes, which are
instances of manipulation actions, such as pushing a certain
object along a certain direction.

S. Jentzsch and A. Gaschler are with fortiss GmbH, An-Institut Tech-
nische Universität München, Munich, Germany. Correspondence should be
addressed to jentzsch@in.tum.de and gaschler@fortiss.org

O. Khatib is with the Department of Computer Science, Stanford Uni-
versity, Stanford, CA.

A. Knoll is with the Department of Informatics, Technische Universität
München, Munich, Germany.

(a) MEKA CLEAN-UP scenario (b) KUKA TABLE scenario

Fig. 1: MOPL can solve complex manipulation tasks by find-
ing a path consisting of collision-free sequences of manipu-
lation primitives. The planner itself is domain-independent,
thus allows primitives for various types of transfer motions
to be defined for a wide range of kinematics and scenarios.
A video is available at http://youtu.be/1QRvjBw58bU.

The main contribution of our approach with respect to
earlier multi-modal planners [3], [4], [5], [6] is that in-
stead of applying projection functions to project samples
onto the constraints defined by each primitive, we rather
sample appropriate state vectors that fulfill these constraints
implicitly. These samples may be incomplete containing
free coefficients, but allow determining a single well-defined
nearest neighbor and enable a flexible and adaptive sam-
pling procedure. Furthermore, our implementation keeps the
generic algorithm separate from problem definitions, which
are given in a markup language, and allows diverse problems
from redundant kinematics to mobile robots to be solved
without tuning parameters of the planner.

II. RELATED WORK

Our notion of the manipulation planning problem was
first defined by Alami, Siméon and Laumond in 1989 [7],
and is most commonly approached by random sampling
in a combined search space of robot and object config-
urations [7], [8, p. 332ff.]. Siméon et al. [9] generate a
probabilistic roadmap in a composite configuration space of
robots and movable objects to capture the connectivity of
sub-dimensional manifolds of manipulation actions. Apart
from pure pick-and-place tasks, Barry et al. [10], [4], [3]
describe a multi-modal planner based on rapidly exploring
random trees (RRT) allowing for more general actions, such
as pushing or sliding. Stilman and Kuffner [11] studied

http://youtu.be/1QRvjBw58bU

the related problem of navigation among movable obstacles,
where a robot can move certain objects, but the goal is to
reach a certain robot position, irrespective of the locations
of the objects. Their approach is to extract the navigational
structure from the high-dimensional state space, and achieves
resolution completeness under reasonable restrictions to the
problem. Berg et al. [12] later extended this work to a
probabilistically complete algorithm. Certainly, manipulation
planning is also a hybrid problem, with continuous paths
and discrete transitions between modes. Hauser and Ng-
Thow-Hing [6] search in a hybrid search space of modes,
such as contact states, and lower-level transitions between
these states. Using several heuristics, they can demonstrate
a bipedal humanoid robot pushing an object.

While manipulation is closely related to grasp planning
and dynamics with its questions of stability, friction, and
physics [13], [8], [14], we constrain ourselves to pre-defined
manifolds of manipulation poses, which in the following will
be introduced as transfer primitives.

III. APPROACH

Our definition of the multi-modal manipulation problem
closely follows Barry’s notion of the diverse action manip-
ulation (DAMA) problem [10], [4], [3]. We first define the
manipulation task and the types of primitive motions for this
task, after which we propose an RRT-based sampling search,
the MOPL algorithm, to approach this class of problem.

A. Problem Definition

Assuming a robot with configuration space (C-space) R
and n movable objects and their corresponding C-spaces
O1, ..., On, our approach searches in the composed C-space
X = R×O1×...×On. A trajectory from a configuration xS
to xG is then defined as a continuous function τ : [0, 1]→ X
that fulfills τ(0) = xS and τ(1) = xG.

Next, we define a set of manipulation primitives, which
describe the actions the robot can perform in X . Manipu-
lation primitives return a trajectory, which most commonly
traverses only a subspace of X . A manipulation primitive
can only begin at or reach a certain set of configurations,
also referred to as its domain.

Definition III.1 (Manipulation Primitive). Given an initial
configuration xS and a goal configuration xG, a manipulation
primitive p(xS , xG) returns a trajectory from xS to xG. It is
applicable only to pairs of configurations within its domain
X(p) = {(xS , xG) ∈ X × X | (xS , xG) in domain of p}.
The set of valid initial configurations XS(p) and the set
of reachable configurations XG(p) for p are then given as
XS(p) = (X × {xG}) ∩X(p) and XG(p) = ({xS} ×X) ∩
X(p). Finally, XG(p|xS) = {xG ∈ X | (xS , xG) ∈ X(p)}
gives us the set of reachable configurations from a certain
initial xS ∈ X using primitive p.

Manipulation primitives can be separated into the two
classes of transit and transfer primitives. For a primitive p,
let (xS , xG) ∈ X(p) and τ = p(xS , xG). The primitive p
is a transit primitive if and only if for all α ∈ [0, 1], the

configuration of every object in τ(α) remains unchanged
with respect to τ(0). Otherwise, p is called a transfer
primitive.

For example, our implementation Transit of the transit
primitive returns a trajectory from initial to goal configura-
tion following a straight line in the joint space of the robot,
assuming a domain of configuration pairs (xS , xG) ∈ X in
which all objects rest unmoved on a support surface in both
xS and xG.

In contrast, the transfer primitive Push describes the robot
pushing an object in a certain direction. The domain of Push
consists of configuration pairs (xS , xG) ∈ X , in which all
objects rest on a support surface in xS , only one object moves
on its support surface between xS and xG, and the robot is
in pushing contact with this object along the pushing path to
xG. In our implementation, Push utilizes primitive nesting
and calls Transit to move the robot to the initial pushing
position, in which the gripper is in contact with the object and
their respective center points are aligned along the pushing
path. Push then returns a trajectory sequence, in which the
robot first moves to the pushing pose via Transit, and then
traverses along the pushing path.

Similar to the DAMA problem in [3], the problem can be
defined as follows:

Definition III.2 (Multi-modal Manipulation Problem).
The multi-modal manipulation problem P is a tu-
ple 〈R, {O1, ..., On}, {B0, ..., Bq}, {p0, ..., pm}, x0, XG〉, in
which R is the configuration space for a robot, {O1, ..., On}
are the configuration spaces for the movable objects,
{B0, ..., Bq} is a set of fixed obstacles, {p0, ..., pm} is
a set of manipulation primitives, x0 ∈ X is an initial
configuration, and XG is a set of goal configurations.

Note that XG often contains an infinite number of possi-
ble configurations, in which only the goal configuration of
(individual) objects is of interest.

Let Xfree(P) be the free space for multi-modal manipula-
tion problem P containing all configurations in which there
is no contact between the robot bodies, objects, or obstacles.
A trajectory τ generated by primitive p is collision-free in
P if and only if for all α ∈ [0, 1]: τ(α) ∈ Xfree(P). Note
that according to [3], transfer primitives can permit certain
collisions for the actual path planning, as Push may permit
collisions between gripper and pushed object. A solution is
a collision-free trajectory sequence generated by the given
primitives from x0 to any configuration in XG.

B. MOPL Planner

To solve multi-modal manipulation problems, we modify
and extend the sampling-based RRT algorithm in multiple
ways, concerning the EXTEND step, sampling and distance
metrics.

1) Empty Space Planner: As our C-space X is only
partially controllable [7], we apply the concept of an empty
space planner (ESP) to guide the non-holonomic way of
extending configurations. By non-holonomic extension, we
mean extension within constrained subspaces of motion

(a) Transfer-Rigid (b) Push-Exterior (c) Push-Interior (d) Push-Frontal

Fig. 2: Available transfer primitives in both the KUKA TABLE and KUKA CABINET scenario. The design of MOPL is
domain-independent and allows geometric primitives for a particular robot to be defined in a markup language separate from
the search algorithm. Whereas pushing an object to a certain position precisely defines the robot pose, Transfer-Rigid
induces one degree-of-freedom (the rotational axis of the object), which MOPL uses to avoid joint limits in the robot pose.

primitives, for example pushing along a certain direction.
Given a predefined set of primitives, the ESP returns a
trajectory sequence from one towards another selected con-
figuration in X , assuming the absence of any obstacles. The
EXTEND function then checks this sequence for collisions
and returns a collision-free (possibly truncated) trajectory
sequence.

In order for the ESP to plan through those low-dimensional
subspaces of X , [3] proposes to implement two functions
ISUSEFUL and PROPAGATE for each primitive: Whereas IS-
USEFUL first checks whether p is applicable to (xS , xG) with
(xS , xG) ∈ X(p), PROPAGATE returns a trajectory sequence
from xS to xG by applying the primitive’s manipulation. The
overall ESP repeatedly chains propagate steps of randomly
selected useful primitives, ultimately returning a trajectory
sequence from xS towards xG.

In contrast to [3], our implementation of ISUSEFUL does
not evaluate computationally costly inverse kinematics (IK),
but rather assumes all poses to be feasible. Later, PROPA-
GATE calculates the IK of contact points. When IK fails, it
propagates only partially towards xG, and tries again with a
different useful primitive.

As an example, the primitive Push is found useful if
all objects are placed on a support surface in xS and at
least one object moves on its support surface between xS
and xG. PROPAGATE then returns a trajectory sequence
from xS towards xG by pushing the object nearest to the
robot, computing the initial pushing position, propagating via
Transit, then calculating the final pushing position with the
object positioned as in xG and appending the trajectory for
this pushing path.

2) Sampling: For our non-holonomic RRT planner to
expand through and respect the lower-dimensional subspaces
of X , we cannot sample uniformly at random. Barry [3]
proposes primitive projection functions fi(xI , xS), which
project xS to a constrained subspace defined by primitive pi
and configuration xI , with the resulting configuration being
reachable for pi within the ESP. Barry emphasizes that the
choice of projection functions must ensure that there is a
non-zero probability of the ESP being able to apply every
possible sequence of primitives.

We take a different approach, allowing undefined coeffi-
cients in sampling, which will be resolved later by nearest
neighbor selection. First, we randomly select a subspace of
X and a respective sample. If that subspace is an object, it
will either be sampled on a support surface, or sampled in
a predefined region in free space, entailing the robot being
set to an appropriate Transfer-Rigid pose. For all other
subspaces, we choose between three options: setting it to
the start configuration, to the goal configuration, or leaving
it undefined. Undefined subspaces will later be resolved in
nearest neighbor comparison to yield a minimum distance.

Compared to Barry’s approach, our sampling allows for
a more meaningful nearest neighbor search, as our sample
does not require projection anymore, and thus remains in a
well-defined fixed state. Furthermore, being independent of
primitive projections, we can guide the search in a more fine-
grained fashion through our C-space for each subspace by
adaptively sampling from the goal or undefined subspaces.
On the downside, though, our approach requires some ex-
pertise and initial adjustment of probability parameters, but
we managed to find a fixed setting which generalizes to all
scenarios presented in this work. Ultimately, it turned out to
yield at least similar results compared to [3], but allowed us
to solve more complex puzzles and manipulations of multiple
objects.

3) Distance Metrics: Since X is not fully controllable,
our distance metric ρ cannot be a simple Euclidean distance,
but should rather reflect the resulting robot path, and thus
the probability of colliding when propagating from one
to another configuration. The empty space planner (ESP)
could, in theory, return an accurate measure, but would
require immense computational costs for the nearest neighbor
search. Instead, we devise a heuristic distance metric to
model the basic characteristics of the ESP, circumventing
the computation of inverse kinematics.

Our distance metric is composed of distance metrics ρi
for each subspace. For object subspaces Oi we can directly
measure Euclidean distances. For a robot with revolute joints,
the distance metric considers the overall joint, Euclidean and
angular distances between end-effector poses with a weight-
ing parameter. While [3] could prove that their algorithm is

exponentially convergent when taking the maximum distance
of all subspaces to define ρ, however, this would not reflect
well the non-holonomic motion in our C-space. An important
example is a short displacement of object positions, which
has minimal impact on this maximum metric, but may
require a robot to travel from and to all objects, resulting
in a very long path.

Our proposed metric sums up all subspace distances ρi.
For each object to be moved, it adds a constant penalty,
and the distance for the robot to move to and from the
object, calculated by forward kinematics. This metric is
reasonably efficient and reflects well the basic characteristics
of our non-holonomic space by introducing additional costs
for transitions and moving objects that cannot move by
themselves.

C. MOPL Algorithm

In the following, we extend the concepts of the RRT
algorithm to multi-modal manipulation. Our implementation,
named MOPL (Algorithm 1), is derived from the bidirec-
tional RRT algorithm, which grows trees from both the initial
configuration and the goal set. A more detailed description
of an earlier version of the algorithm can be found in the
main author’s master thesis [15].

We iteratively select one of both trees, represented by
Va, sample from the C-space, compute the nearest neighbor,
and extend the tree in a collision-free fashion yielding new
vertices and edges. If the extension step induces at least
one additional vertex in Va, we extend the opposing tree Vb
towards the last configuration added to Va. In other words,
while Va explores in a random fashion, Vb will be extended
towards Va, trying to find a solution path by connecting both.
In this work, we use an unbalanced version of bidirectional
search by swapping both trees after each iteration, so they
are not guaranteed to be of equal size.

For planning in both directions in our non-holonomic
system, a crucial adaptation is required. Since our goal set
will most likely be a subspace of X , the backwards tree
should ideally cover this subspace. While [3] proposes to
simply sample and add a goal configuration in every iteration,
we can rather take advantage of our previously discussed un-
defined subspaces. When searching for the nearest neighbor
in our backwards tree, we also consider the configuration
given by PROJSAMP, which projects the sample xS on the
undefined subspaces of XG and generates random samples
for subspaces which are undefined in both xS and XG. This
process always creates a fully-defined configuration in XG

closest to xS .

IV. EVALUATION

Our implementation of the MOPL algorithm keeps the
search distinct from domain-specific problem descriptions.
For collision detection, inverse kinematics, and graph algo-
rithms, it uses functions of the Robotics Library 1 by Rickert
[16]. Scenarios are specified in a markup language, defining

1http://www.roboticslibrary.org

Algorithm 1
MOPL(X,B,P, x0, XG, {ρ0, ..., ρn}), derived from [3, p.
68]
Input: C-space X = R × O1 × ... × On, Fixed obstacles
B = {B0, ..., Bq}, Primitives P = {p0, ..., pm}, Initial
configuration x0, Goal set XG, Distance metrics {ρ0, ..., ρn}
Output: Trajectory sequence from x0 into XG

1: Va ← {x0}, Vb ← {}
2: F ← true � true extends forwards, false backwards
3: while true do
4: xS ← SAMPLE(X)
5: xT ← argminv∈Va∪PROJSAMP(¬F,xS ,XG) ρ(v, xS)
6: {τ0, ..., τl} ← EXTEND(xT , xS , X,B, P, F)
7: Va ← Va ∪

⋃
τ∈{τ0,...,τl}

⋃
α∈[0,1] τ(α)

8: if l > 0 or there are new configurations in τ0 then
9: � extend Vb towards Va

10: xT ← argminv∈Vb∪PROJSAMP(F,xS ,XG) ρ(v, τl(1))
11: {σ0, ..., σk} ← EXTEND(xT , τl(1), X,B, P,¬F)
12: Vb ← Vb ∪

⋃
σ∈{σ0,...,σk}

⋃
α∈[0,1] σ(α)

13: if σk(1) = τl(1) then
14: return EXTRACTTRAJECTORY(Va, Vb)
15: SWAP(Va, Vb), F ← ¬F

robot and workspace models, sampling spaces, problem de-
scription, planner settings, manipulation primitives, sampling
and metric parameters, but also post processing routines like
path smoothing.

To show the generic capabilities of MOPL, we evaluate
four non-trivial scenarios that cover diverse robot kinematics,
multiple objects to plan for, and a variety of manipulation
primitives, involving pushing and grasping objects. Table I
shows the benchmark results on all scenarios averaged over
200 runs.

A. Scenario MEKA CLEAN-UP

Our first scenario uses a humanoid robot with a torso,
an arm, and a tendon-driven hand, built by Meka Robotics.
Altogether it features 15 degrees-of-freedom, but we will
only plan for the torso and the arm, resulting in a 10-
dimensional configuration space for the robot. While we
show a detailed CAD model for visualization purposes,
our collision detection routine utilizes a bounding convex
decomposition for efficiency [17], [18]. In this scenario,
the robot acts as a bartender and is supposed to clean
up the workspace by aligning all three bottles on the
lower support surface (Figure 1a). Besides Transit, the
motion primitives include grasping and transferring an ob-
ject (Transfer-Rigid), pushing with the palm or interior
surface of the hand (Push-Interior), and pushing with
the exterior surface of the hand (Push-Exterior). Whereas
pushing an object in a certain direction fully defines the
contact configuration, transferring a rigidly attached object
has one degree-of-freedom and allows the robot to grasp
from any direction. For calculating the respective hand pose
in the PROPAGATE step, we implement an iterative approach
to inverse kinematics that avoids joint limits, which results

http://www.roboticslibrary.org

A
Transfer-Rigid(obj1)

B
Push-Interior(obj2)

C
Transfer-Rigid(obj2)

D
Push-Exterior(obj3)

Fig. 4: Example real-world solution of the MEKA CLEAN-UP scenario featuring a 10-degrees-of-freedom manipulator. While
the bottle in the center can be easily picked up and transferred directly (A), the leftmost bottle is not immediately accessible
for grasping, but can be pushed towards a position where it can then be transferred (B, C). Finally, in order to align all
three bottles, the rightmost bottle is being pushed with the exterior surface of the hand (D).

Fig. 3: Example solution path to the MEKA CLEAN-UP
scenario in simulation. Edges drawn in red correspond to
transfer primitives being applied, blue edges to transit prim-
itives. The illustrated solution path has 101 vertices (black
dots) and a Cartesian length of 6.47 meters.

in more natural robot poses and avoids near-singular robot
configurations.

In this scenario, the robot plans in a 19-dimensional
composed C-space with two separate support surfaces on top
of the table and obstacles, such as the table itself or the wall
(Figure 3). All three manipulation primitives are useful to the
solution, as transferring between support surfaces requires
Transfer-Rigid, the rightmost blue bottle must first be
pushed towards a position where more space for grasping is
available (Push-Interior), and the leftmost red bottle can
easily be transferred by Push-Exterior. Figure 3 shows
a solution path in simulation, including the respective hand
poses induced by the applied primitives. Figure 4 shows a
real-world demonstration of a solution.

Fig. 5: Example solution path to the KUKA CABINET sce-
nario in simulation. Edges drawn in red correspond to trans-
fer primitives being applied, blue edges to transit primitives.
The illustrated solution path has 118 vertices (black dots)
and a Cartesian length of 10.12 meters.

When benchmarking this scenario, all 200 instances could
be solved within a given time limit of 10 minutes each,
resulting in 152 seconds average search time. As this scenario
features a high-dimensional C-space with 19 dimensions and
a complex robot with well-defined limits for each joint,
the computation of the inverse kinematics becomes more
complex (38% of total search time), but also the nearest
neighbor search takes increasingly more time (49% of total
search time) with each newly added vertex. Although the
random nature of this RRT-based algorithm yields large stan-
dard deviation values, after applying a simple but common
path smoothing technique by shortcutting Transit edges,
the final solution paths vary only by about 7% in Cartesian
length.

A
Transfer-Rigid(obj1)

B
Transfer-Rigid(obj2)

C
Transfer-Rigid(obj3)

D
Push-Interior(obj3)

Fig. 6: Example real-world solution of the KUKA TABLE scenario. A 7-degrees-of-freedom manipulator is supposed to
transport three objects from one support surface (A) and line them up on another (D). While the push primitives cannot
move objects to a different support surface, they are often needed to move objects that are close together (C), where
Transfer-Rigid would collide.

Fig. 7: Example solution path to the MOBILE BLOCKED
scenario in simulation. The illustrated solution path has 58
vertices (black dots) and a Cartesian length of 16.00 meters.

B. Scenarios KUKA TABLE and KUKA CABINET

Our next two scenarios feature manipulation tasks with
a 7-degrees-of-freedom Kuka robot. In the KUKA TABLE
scenario, the robot has to transport three objects to a nearby
table and line them up (Figure 1b). Additionally, in the
KUKA CABINET scenario, the objects have to be placed
within a cabinet. Besides Transfer-Rigid, the robot can
apply several push primitives (Figure 2). These are crucial to
solve the latter scenario, because all rigid transfers to the goal
would collide with the cabinet. Figure 6 shows a solution for
KUKA TABLE in the real world, while Figure 5 illustrates a
solution path for KUKA CABINET in simulation.

In contrast to the Meka robot, Kuka’s larger joint limits
allow for a larger variety of poses for individual actions,
which leads to these scenarios being solved much faster.
Whereas KUKA TABLE can be solved in under five seconds
on average, KUKA CABINET requires several primitives to
be applied for each of the three objects and can be solved
in under one minute on average.

C. Scenario MOBILE BLOCKED

Our fourth and last scenario MOBILE BLOCKED features
a simple holonomic mobile robot operating in a five-by-five
meters 2D world. This scenario is mainly to show that MOPL

is not limited to joint-based robots and that the free subspace
coefficients in our algorithm allow us to introduce movable
objects without fixed goal positions. In this scenario, the
robot has to transfer the lower left object before heading
to the center, but is blocked by three other movable objects
(Figure 7). Here, pushing is the only transfer primitive. This
scenario is solved in about 11 seconds on average.

D. Limitations

The current version of MOPL is a flat planner and does
not subdivide the problem through hierarchical planning as
proposed by Barry [3], or applies other kinds of heuristics to
guide the search in higher dimensional search spaces. Thus,
MOPL does not scale well with larger numbers of movable
objects.

Manipulation in MOPL is quasi-static. Dynamic motion
primitives, such as throwing objects, can in principle be
integrated with physics simulation, but would limit search
to a forward search with a single tree. Also, contacts with
unrelated objects are treated as collisions and are not allowed,
which limits solving highly cluttered scenarios.

V. CONCLUSION AND FUTURE WORK

Our approach to multi-modal path planning contributes
a new sampling technique without explicit projection and a
nearest neighbor computation that completes the state vector.
It has been shown to be effective for a wide range of kine-
matics, tools and motion primitives, from highly redundant
humanoid manipulators to mobile robots. MOPL does not
require fine-tuning of planner parameters to successfully plan
and solve challenging scenarios for different robot platforms
including user-defined motion primitives. All software is
published in an open-source repository2.

For future work, we plan to integrate additional RRT
variants, which can potentially increase the performance of
the search.

ACKNOWLEDGEMENTS

The authors would like to thank Torsten Kröger for his
help with the Kuka experiments. This research was supported
by the European Union’s Seventh Framework Programme

2https://github.com/fortiss/mopl

https://github.com/fortiss/mopl

TABLE I: Benchmark and evaluation of search space and solution quality of four different types of scenarios, which cover
all types of manipulation primitives and robot kinematics described in the scenario discussion. All benchmark tests were
executed non-parallelized on a 3.10 GHz desktop computer and repeated 200 times with different random seeds, measuring
mean and standard deviations.

Scenario MEKA CLEAN-UP
Place three objects
on a lower support
surface using diverse
transfer primitives.

KUKA TABLE
Transfer three
objects from one
table to another.

KUKA CABINET
Place three objects
from one table in
the cabinet on the
other table.

MOBILE BLOCKED
Get multiple mov-
able objects out of
the way to rearrange
a certain object.

Timeout 10 minutes 1 minute 3 minutes 1 minute
Success rate [%] 100% 100% 96.5% 97.5%

Benchmark Results Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Total search time [s], thereof 152.367 81.054 4.955 2.329 59.766 39.969 10.966 9.676
a) Sample Generation [s] 4.303 1.646 0.159 0.087 1.209 0.588 0.031 0.015
b) Nearest Neighbor Search [s] 75.270 56.188 0.617 0.584 28.208 25.624 9.052 8.232
c) PROPAGATE step [s] 53.958 18.190 2.985 1.472 25.747 12.486 0.031 0.015
d) CONNECT step [s] 14.253 5.759 0.417 0.202 3.038 1.642 0.273 0.168

Inverse Kinematics [s] 57.828 19.635 3.125 1.538 26.759 12.949 0 0

Iterations of the algorithm 3 505 1 295 225 117 1 693 823 4 132 1 959
Edges of the search trees 7 893 3 095 1 387 639 9 065 4 369 4 820 2 205
Vertices of the search trees 7 896 3 095 1 391 640 9 070 4 369 5 304 2 409
Collision checking queries, thereof 188 770 56 460 20 234 4 709 71 377 24 258 55 445 20 570

Collision checks in free space 184 466 54 912 19 906 4 616 69 245 23 313 44 127 15 416

Solution path
Vertices of the path 104.330 10.315 74.720 16.400 142.860 24.571 63.703 8.214
Cartesian length of the path [m] 6.171 0.447 8.112 1.535 11.071 1.928 17.389 2.202
Primitives applied in the path, thereof

Number of Transits 5.910 0.816 4.515 0.885 12.150 2.067 6.462 1.374
Number of Pushes and variants 1.710 0.747 0.290 0.692 7.187 1.881 5.462 1.374
Number of Transfers 4.165 1.115 3.460 0.912 4.415 1.340 0 0

through the projects JAMES under grant agreement no.
2704353, SMErobotics under grant agreement no. 2877874,
and HBP under grant agreement no. 6041025.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[2] T. Lozano-Pérez, J. Jones, E. Mazer, P. O’Donnell, W. Grimson,
P. Tournassoud, and A. Lanusse, “Handey: A robot system that
recognizes, plans, and manipulates,” in Intl Conf on Robotics and
Automation (ICRA), vol. 4, 1987, pp. 843–849.

[3] J. L. Barry, “Manipulation with diverse actions,” Ph.D. dissertation,
Massachusetts Institute of Technology, June 2013.

[4] J. Barry, L. P. Kaelbling, and T. Lozano-Pérez, “A hierarchical
approach to manipulation with diverse actions,” in IEEE Conference
on Robotics and Automation (ICRA), 2013.

[5] K. Hauser, “Motion planning for legged and humanoid robots,” Ph.D.
dissertation, Stanford University, December 2008.

[6] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” International
Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[7] R. Alami, T. Siméon, and J.-P. Laumond, “A geometrical approach
to planning manipulation tasks. the case of discrete placements and
grasps,” in International Symposium on Robotics Research, 1989.

[8] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[9] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The International Journal of
Robotics Research, vol. 23, no. 7-8, pp. 729–746, 2004.

3http://www.james-project.eu/
4http://www.smerobotics.org/
5https://www.humanbrainproject.eu/

[10] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Ma-
nipulation with multiple action types,” in Experimental Robotics,
ser. Springer Tracts in Advanced Robotics. Springer International
Publishing, June 2012, vol. 88, pp. 531–545.

[11] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 2, no. 04, pp. 479–503, 2005.

[12] J. Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha, “Path
planning among movable obstacles: A probabilistically complete ap-
proach,” in Algorithmic Foundation of Robotics VIII, ser. Springer
Tracts in Advanced Robotics, G. Chirikjian, H. Choset, M. Morales,
and T. Murphey, Eds., 2009, vol. 57, pp. 599–614.

[13] M. R. Dogar and S. S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in Intl Conf on Intelligent Robots and
Systems (IROS), 2010, pp. 2123–2130.

[14] J. King, J. Haustein, S. Srinivasa, and T. Asfour, “Nonprehensile whole
arm rearrangement planning on physics manifolds,” in Intl Conf on
Robotics and Automation (ICRA), May 2015, pp. 2508–2515.

[15] S. Jentzsch, “Multi-modal path planning for solving abstract robot
tasks,” Master’s thesis, Technische Universität München, Germany,
January 2014.

[16] M. Rickert, “Efficient motion planning for intuitive task execution in
modular manipulation systems,” Dissertation, Technische Universität
München, 2011.

[17] A. Gaschler, R. P. A. Petrick, M. Giuliani, M. Rickert, and A. Knoll,
“KVP: A Knowledge of Volumes Approach to Robot Task Planning,”
in Intl Conf on Intelligent Robots and Systems (IROS), November
2013, pp. 202–208.

[18] A. Gaschler, I. Kessler, R. P. A. Petrick, and A. Knoll, “Extending the
knowledge of volumes approach to robot task planning with efficient
geometric predicates,” in Intl Conf on Robotics and Automation
(ICRA), May 2015, pp. 3061–3066.

http://www.james-project.eu/
http://www.smerobotics.org/
https://www.humanbrainproject.eu/

	Introduction
	Related Work
	Approach
	Problem Definition
	MOPL Planner
	Empty Space Planner
	Sampling
	Distance Metrics

	MOPL Algorithm

	Evaluation
	Scenario Meka Clean-up
	Scenarios Kuka Table and Kuka Cabinet
	Scenario Mobile Blocked
	Limitations

	Conclusion and Future Work
	References

