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Abstract— This paper presents a novel approach based on
Random Finite Set (RFS) Statistics for estimating a vehicle’s
trajectory in complex urban environments by using a fixed
single camera. For this, we extend our earlier works which
used Probability Hypothesis Density (PHD) filtering under
sensor fusion framework and are among the first to apply
this technique to visual odometry in real traffic scenes. We
consider features acquired from the camera as a group targets,
use the PHD filter to update the overall group state and then
estimate the ego-motion vector of the camera. Compared to
other approaches, our approach presents a recursive filtering
algorithm that provides dynamic estimation of multiple-targets
states in the presence of clutter and avoids the association
problem. Experimental results show that this method provides
good robustness under real traffic scenarios.

I. INTRODUCTION

Using cameras for vehicle navigation is the current trend

in the field of intelligent vehicles. Visual odometry is gaining

importance for the estimation of the vehicle’s trajectory. The

main idea is using cameras to find corresponding features

and calculate the displacement between them in successive

frames. However, challenges still need to be considered in

real traffic scenes as discussed in [1]:

• Features that are used to estimate the ego-motion vector

may contain some false associated pairs. Robust match-

ing techniques are needed to avoid false matching.

• Unevenly distributed features that are aggregated in a

small region may influence the performance of estima-

tion since they are not uniformly distributed throughout

the whole space. Effective extracting techniques are

needed to overcome this challenge.

• The algorithms for ego-motion are typically based on

features of stationary objects. However, typical road

scenes may contain a large amount of features stemming

from moving objects. All these artifacts reduce the

performance of ego-motion estimation. There should be

an approach under the Bayesian filtering framework to

reduce the influences of features from non-stationary

objects.

In this paper, we propose a method for ego-motion com-

putation based on the Probability Hypothesis Density (PHD)

filter [2] under Random Finite Set (RFS) statistics. PHD filter

works on sets of features, called set-valued states, instead

of single features. The observations associated with the

features are treated as set-valued observations. Modeling set-

valued states and set-valued observations as Random Finite
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Sets allows to solve the problem of dynamically estimating

multiple-targets in the presence of clutter and association

uncertainty in a Bayesian filtering framework [3] [4].

In our earlier work [5], we presented a visual odometry

(VO) system based on stereo cameras and a gyroscope

to provide localization information in urban environments

by using a PHD filter. In that case, the stereo cameras

provide accurate 3D information of the feature points in

the vehicle coordinates and the gyroscope helps the PHD

filter to detect the falsely associated features and moving

targets. The experiments show that the PHD filter provides

good robustness under the sensor fusion framework. This

paper enhances our previous work by only using a single

camera to calculate the ego-motion vectors. The ego-motion

vectors are estimated by using the coordinates of the feature

points on the 2D space, which may contain huge inaccurate

information since the single camera cannot provide the whole

3D information of the features. In addition, the rotation is

estimated based on the non-linear mapping from the feature

points’ location by using the PHD filter. We extend our

previous work to show the feasibility and the reliability of the

PHD filter in the VO domain compared with other methods

by different kinds of sensors. Combining with the previous

work, we came to the conclusion that this method keeps good

robustness under real traffic scenarios, either the sensors

provide quite accurate 3D information and orientation or

rough 2D information.

The general idea of our approach is as follows: The

location of features on the image plane (in Sec. III) can be

mapped to the ground plane (vehicle coordinates in Sec. III)

via its homography. Considering feature points’ locations on

this ground plane as the targets, a PHD filter is applied to

estimate the camera motion (velocity and rotation angle in

vehicle coordinates) from the group targets’ state set at each

frame.

Our method consists of two phases: a preprocessing

phase and a tracking phase. The preprocessing phase starts

by extracting features using SIFT (Scale Invariant Feature

Transform) from consecutive frames and matching them as

feature pairs from consecutive frames. Then, the coordinates

of the features are transformed to 2D vehicle coordinates.

Finally, we record features positions as measurements for

the tracking phase.

The tracking phase is performed in spatial dimension. In

this phase the algorithm tracks features in vehicle coordinates

by using the PHD filter to estimate the ego-motion vector

(velocity and rotation angle) at each frame.

We used an off-the-shelf platform (iPhone4) to recorded

data under real traffic scenarios to evaluate the approach. The
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platform offers data from GPS, camera and gyroscope sen-

sors. The GPS and gyroscope data is only used to compare

the performance of the PHD filter used in this paper (GPS

provides the velocity while the gyro provides the rotation

angle, using these two information we can calculate the real

trajectory on the ground plane). The data from the camera is

used to calculate the velocity and the rotation angle of the

camera on the ground plane at each frame. Finally a dead-

reckoning method is used to calculate the whole trajectory

of the vehicle. The experimental results indicate that the

proposed method yields precise estimation.

The benefits of our approach are threefold: First, it elim-

inates false matched features since the PHD filter does not

need to focus on the data association problem. Second,

with the pruning and merging approach in the PHD filter,

the aggregated targets can be treated as a single target. It

avoids that a small region contains many features which may

influence the estimation’s precision. Third, the PHD filter

can utilize the dynamic motion model under the Bayesian

filtering framework to reduce the influences of non-stationary

objects.

The remainder of this paper is structured as follows:

Sec. II describes the related work in visual odometry. Sec.

III introduces details about the preprocessing phase. Sec.

IV describes the PHD filter and its implementation. Sec.

V presents experimental results under real traffic scenes.

Finally, the paper is concluded in Sec. VI.

II. RELATED WORK

Much work has been done in visual odometry using e.g.

a single camera [6] [7] [8], stereo cameras [9] [10], or

an omnidirectional camera [11]. One approach to visual

odometry uses the Structure-from-Motion (SfM) technique.

The idea is to find good quality features in one frame and

the corresponding features in the next frame, estimating

displacements from these features and translating them to the

motion of the camera [12]. Compared with single cameras,

stereo cameras and omnidirectional cameras provide good

performance of the 3D construction to the features, which

is often used to calculate the motion of the camera in

SfM technique. Using RANSAC approach [1] [10] enables

the method to overcome a large number of outliers as

encountered in real traffic scenes.

Optical flow is a different approach which focuses on the

change in the brightness of the image, where this change

in brightness results from the apparent motion in the image

[13] [14]. This method is much simpler and computation-

ally cheaper than the extraction and tracking of features.

However, the precision is not very good. Corke et al.[15]

compared these two approaches and got the conclusion that

SfM methods allow higher precision at the cost of higher

computational needs.

In this paper, we apply the SfM technique to estimate

the displacements of the vehicle within the RFS framework.

The contribution of our approach is that it avoids the data

association issue and the influence of the unevenly distributed

features in SfM technique. Although there are other recent

(a) Top view of the scene (b) Same scene viewed from the left
side

Fig. 1. Coordinate systems

visual odometry techniques which do not require data asso-

ciation, do not suffer from uneven distribution and are based

alternatively on robust motion estimation [16], PHD filter

still plays an important role in VO domain.

III. PREPROCESSING PHASE

A. Interesting Points Extraction

In most of the previous work on visual odometry using

SfM technique, features are used for establishing correspon-

dences between consecutive frames in a video sequence. In

this paper, we use the SIFT features to estimate the ego-

motion [17].

In our system, the features are extracted from two con-

secutive frames and matched as feature pairs. We transform

these features in 2D vehicle coordinates and use them as

measurements for the PHD filter and the compared RANSAC

method. Our approach uses the SIFT extraction technique

to calculate the position of features on the image plane. It

does not use the feature descriptors of SIFT as a matching

is not performed. However, the descriptors are used for

comparison with the RANSAC approach, which relier on

a feature matching method.

B. Transformation from Image Coordinates to Vehicle Coor-

dinates

We determine the mapping between the image coordinates

(u,v) of a tracked feature and its corresponding point (x,y)

on the ground plane (vehicle coordinates). Fig.1 shows that

the camera is placed at height h above the road with

down/tilt angle φ. X,Y, Z are the axes of the vehicle’s

coordinate system while Xc, Yc, Zc, are the axes of the

camera’s coordinates system. The camera was calibrated by

Zhang’s approach [18]. Suppose the camera has zero skew,

we transform the feature coordinates from image coordinates

to vehicle coordinates as follows [19]:

A point X = [x, y, z, 1]
T

in the vehicle coordinates is

related to its image coordinates x = [uw, vw,w]
T

,





uw
vw
w



 = KR[I3×3| − T ]









x
y
z
1









(1)
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K =





f 0 uc

0 f vc
0 0 1



 , R =





1 0 0
0 −sinφ −cosφ
0 cosφ −sinφ





where K is the camera calibration matrix, R is the rotation

matrix corresponding to a rotation of φ around the X-axis, I
is the identity matrix and T = [0, 0, h]

T
is the translation of

the camera from the origin of the vehicle coordinate system.

[I3×3| − T ] is the concatenation of I and T . (uc, vc) are

the principal point coordinates. The actual pixel coordinates

(u, v) are defined with respect to the origin in the top left

corner of the image plane and w is a scale factor.

Using equation (1) we can express the relationship be-

tween the vehicle coordinates (xk, yk, zk) of a point on the

road (zk = 0) to its image coordinates (uk, vk) at frame k
as follows:

uk =
wuk

w
=

fxk

ykcosφ+ hsinφ
+ uc (2)

vk =
wvk
w

=
fhcosφ− fyksinφ

ykcosφ+ hsinφ
+ vc (3)

Rearranging above equations, we get

xk =
(uk − uc)(hfcosφ+ fhtanφsinφ) + 2hucsinφ(vc − vk)

f(vk + ftanφ− vc)
(4)

yk =
h(f − vktanφ+ vctanφ)

vk + ftanφ− vc
(5)

IV. TRACKING PHASE

A. Overview on RFS Statistics

The Random Finite Set (RFS) is a hidden markov chain

model with set-valued states and set-valued observations

while the PHD filter is a predict and correct framework

for recursive Bayesian filtering in such a RFS formulation.

The RFS approach to multiple-target tracking is an emerging

and promising alternative to the traditional association-based

methods [20] [2]. A comparison of the RFS approach and

traditional multiple-target tracking methods has been given

in [20]. The focus of this paper is the PHD filter, a recursion

that propagates the first-order statistical moment, or intensity,

of the RFS of states in time [2] [21]. In the PHD filter,

the collection of individual targets is treated as set-valued

states, and the collection of individual observations is treated

as set-valued observations. Fig. 2 is a basic introduction of

the PHD filter which shows that the observations and their

estimated states are treated as a single valued measurement

and its corresponding estimation at each frame [22]. The

PHD filter operates on the single-target state space and avoids

the combinatorial problem that arises from data association.

The Gaussian Mixture Probability Hypothesis Density

(GM-PHD) filter is a closed form implementation of the PHD

filter, which is based on the Bayesian estimation framework

utilizing random finite sets as the mathematical backbone

[21].

B. Kalyan [23] and John. M [24] implemented the PHD

filter in the field of simultaneous localization and mapping

(SLAM) problem. Results show that proposed PHD filter is

an effective solution to the SLAM problem.

Fig. 2. Set-valued states and Set-valued observations

In this paper, we use the PHD filter to estimate the

motion of the target set instead of tracking individual targets.

Assuming the motion of the whole targets to be equal,

we calculate the average of each target’s state to acquire

the motion of the whole set. From the physical model we

consider the whole set to have the same motion vector as the

vehicle. According to this model we estimate the vehicle’s

ego-motion vector at each frame. The differences between

this paper and the PHD-SLAM approaches [24] [23] are as

follows: This paper presents the PHD filter to estimate the

trajectory of the vehicle from complex scenes, which contain

many moving targets and clutter. Our approach focuses on

the implementation of the PHD filter for visual odometry

under real traffic scenes and a motion model to not only

predict the ego-motion vector but also distinguish real targets

from clutter. Compared to earlier approaches, our work is

among the first to apply PHD filtering to visual odometry in

real traffic scenes.

B. Mathematic Background on the PHD Filter

The RFS is a hidden markov chain model with set-valued

states and set-valued observations while the PHD filter is

a predict and correct framework for recursive Bayesian

filtering in such a RFS formulation. It is an approximation

to alleviate the computational intractability of the optimal

multi-target Bayes filter, proposed by Mahler [2].

The targets in a multi-target scenario at time k is rep-

resented as a finite set of vectors xk,1, . . . ,xk,N(k) which

takes values from the state space X ∈ R
nx . Similarly

the observations are represented as a finite set of vectors

zk,1, . . . , zk,M(k) which takes values from the observation

space Z ∈ R
nz . N(k) and M(k) represent the number of

targets and observations at time k respectively. These finite

sets are known as the multi-target state and observation:

Xk = {xk,1, . . . ,xk,N(k)} ∈ F(X ) (6)

Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z) (7)

where F(X ) and F(Z) denote the sets of all finite subsets

of X and Z , respectively.

The model must encapsulate the time varying numbers

of targets in a multi-target scenario. Also the model must

consider sensor imperfections such as missed detections and
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false alarms. The multi-target state is modeled as the union

of different random finite sets:

Xk = [
⋃

ζ∈Xk−1

Sk|k−1(ζ)] ∪ Γk (8)

Sk|k−1 represents the targets that have survived from the

previous time increment k − 1. It is modeled as a Bernoulli

RFS which means it can either survive with probability

PS,k(xk−1) and take on the new value {xk} with probability

density fk|k−1(xk|xk−1) or die and take on the empty set ∅

with probability 1−PS,k(xk−1). Γk represents targets which

are spontaneously born at the current time k. It is modeled

as a Poisson RFS which is specified by a mean birth rate and

spatial birth density, or equivalently by its PHD or intensity

γk(·) where the mean birth rate is
∫

γk(x)dx and the spatial

birth density is γk(·)/
∫

γk(x)dx.

Similarly the set observation Zk can be seen as the union

of two random finite sets:

Zk = [
⋃

x∈Xk

Θk(x)] ∪Kk (9)

Θk represents the measurements that originate from the

targets and is modeled as a Bernoulli RFS which generates

a detection with probability PD,k(xk) and yields the mea-

surement {zk} with probability density gk(zk|xk) or results

in a missed detection yielding an empty measurement set ∅

with 1− PD,k(xk).
Kk represents the set of false alarms or clutter and is

modeled as a Poisson RFS, specified by its intensity κk(·)
where the mean clutter rate is

∫

κk(z)dz and the spatial

clutter density is κk(·)/
∫

κk(z)dz.

Using these random finite set models it is possible to

construct multi-target dynamical and observation models

analogous to the single-target case. Randomness in Xk and

Zk can be encapsulated into a multi-target transition density

and multi-target observation likelihood.

Under the above models, the multi-target Bayes filter

propagates the posterior multi-target density πk(·|Z1:k) re-

cursively in time. However, due its combinatorial nature, it

is intractable in most applications. To alleviate this, the PHD

filter propagates the first moment or PHD Dk(·) of multi-

target posterior density πk(·).
The PHD recursion is given by :

Dk|k−1(xk) =
∫

PS,k(xk−1)fk|k−1(xk|xk−1)Dk−1(xk−1)dxk−1 (10)

+γk(xk)

Dk(xk) = (1− PD,k(xk))Dk|k−1(xk) (11)

+
∑

z∈Zk

PD,k(xk)gk(zi|xk)Dk|k−1(xk)

κk(zi)+
∫
PD,kgk(zi|ζ)Dk|k−1(ζ)dζ

Equation (12) illustrates that the integral of the PHD over

a certain domain Ψ yields the estimated number of targets

N(k) in that domain at time k. The PHD is not a probability

density and does not necessarily sum to 1[2].

N(k) =

∫

Ψ

Dk(xk)dxk (12)

It is to be noted that the PHD recursion involving equations

(11) and (11) have multiple integrals that have no closed

form solutions in general. One of the common approaches

to mitigate this problem is to use GM-PHD approximations.

The GM-PHD filter [21] is a specialized version of the PHD

filter. It assumes that the target’s motion and observation

process can be modeled as:

fk|k−1(x|ζ) = N (x;Fk−1ζ, Qk−1) (13)

gk(z|x) = N (z;Hkx, Rk) (14)

where x refers to the current state, z to the current

measurement, ζ to the previous state, N (·;m, P ) denotes

a Gaussian distribution with mean m and covariance P ,

Fk−1 is the state transition matrix, Qk−1 is the process

noise covariance, Hk is the observation matrix, and Rk

is the observation noise covariance. Survival and detection

probability are supposed constant on the entire observed area:

PS,k(x) = PS , PD,k(x) = PD (15)

Birth targets γk are modeled by a RFS written as a

Gaussian mixture:

γk(x) =

Jγ,k
∑

i=1

ω
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k) (16)

where ω
(i)
γ,k,m

(i)
γ,k and P

(i)
γ,k are the weight, mean and covari-

ance of the birth Gaussians and Jγ,k is their amount.

If the posterior PHD at time k− 1 is a Gaussian mixture:

Dk−1(x) =

Jk−1
∑

i=1

ω
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1) (17)

then the predicted PHD (11) to time k is a Gaussian mixture

Dk|k−1(x) = PS

Jk−1
∑

i=1

ω
(i)
k−1N (x;m

(i)
S,k|k−1, P

(i)
S,k|k−1)+γk(x)

m
(i)
S,k|k−1 = Fk−1m

(i)
k−1, P

(i)
S,k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T
k−1

and the update PHD equation (11) at time k is also a

Gaussian mixture and is given by

Dk(x) = (1− PD)Dk|k−1(x) +
∑

z∈Zk

DD,k(x; z) (18)

where

DD,k(x; z) =

Jk|k−1
∑

j=1

ω
(j)
k (z)N (x;m

(j)
k|k(z), P

(j)
k|k)

ωj
k(z) =

PDw
(j)
k|k−1q

(j)
k (z)

κk(z) + PD

∑Jk|k−1

l=1 w
(l)
k|k−1q

(l)
k (z)

q
(j)
k (z) = N (z;Hkm

(j)
k|k−1, HkP

(j)
k|k−1H

T
k +Rk)
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m
(j)
k (z) = m

(j)
k|k−1 +K

(j)
k (z−Hkm

(j)
k|k−1)

P
(j)
k = [I −K

(j)
k Hk]P

(j)
k|k−1

K
(j)
k = P

(j)
k|k−1H

T
k [HkP

(j)
k|k−1H

T
k +Rk]

−1

A table of codes for the GM-PHD filter is in [21].

Corresponding to the approximate multi-sensor update for

the PHD recursion, the approximate multi-sensor update for

the GM-PHD filter is obtained by consecutive application of

the GM update step given directly above.

Although the original GM-PHD filter applies to linear

Gaussian multi-target models, the formulation can accom-

modate non-linear dynamics and measurement models by

linearization or unscented transforms. An Extended Kalman

(EK) and Unscented Kalman (UK) version of the GM-PHD

filter has also been proposed in [21].

C. Implementation Details

Our algorithm is implemented in 2D vehicle coordinates.

In this paper, we treat the positions of the features as

the measurements on each frame. Suppose at frame k, the

coordinates of one feature point is (xk, yk). According to

Euler’s rotation theorem the relationship between the feature

points in consecutive frames is as follows:

[

xk+1

yk+1

]

=

[

cos∆βk −sin∆βk

sin∆βk cos∆βk

] [

xk −∆xk

yk −∆yk

]

(19)

where (∆xk,∆yk,∆βk) is the vehicle’s ego-motion vector.

In this paper, (∆xk,∆yk) is the vehicle’s movement in (x, y)
direction and ∆βk is the change of the vehicle’s rotation

angle.

We consider the features as the targets and clutter while

the targets satisfy the above equations and the clutter does

not. In this paper, the targets are associated features from

the ground plane and the clutter are features from falsely

matched pairs, moving objects or associated features which

are not on the ground plane (cannot provide the accurate

location information). The goal of this paper is to utilize the

PHD filter to estimate the targets’ states at each frame, and

then calculate the vehicle’s ego-motion vector. The benefit

of using PHD filter is that it models the set-valued states

and set-valued observations as RFS and allows to solve

the problem of dynamically estimating multi-targets in the

presence of clutter and association uncertainty in a Bayes

filtering framework.

• From the physical model we assume the targets have

the same motion process. In the same manner like

equation (19), we assume that at frame k the targets

move independently and the motion process parameters

are:

xk = [xk, yk, βk, ẋk, ẏk]
T (20)

F =













cosβk −sinβk 0 −cosβk sinβk

sinβk cosβk 0 −sinβk −cosβk

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













(21)

The process noise is defined by:

Qk = diag([σ2
x1, σ

2
y1, σ

2
β1, σ

2
ẋ1
, σ2

ẏ1
]) (22)

• The measurement vector is as follows:

z = [x, y]T (23)

Where (x, y) is acquired according to the coordinates

transformation process (transformed from the image

coordinates to the vehicle coordinates). To map the state

vectors to the observation space, the observation matrix

is:

H =

[

1 0 0 0 0
0 1 0 0 0

]

(24)

The observation noise is described as:

Rk = diag([σ2
x, σ

2
y]) (25)

• Aggregated targets falling below a given threshold are

pruned and the remaining targets are reweighted accord-

ingly (more details about weight can be found in [21]).

If the distance of the targets defined by the state matrix

and covariance matrix falls within a merging thresh-

old τ , then the targets are merged. More specifically,

starting with the targets with the weights ωj
k, we merge

targets in set M j
k as follows:

M j
k := {i : (mi

k−m
j
k)

T (P i
k)

−1(mi
k−m

j
k) ≤ τ} (26)

According to the pruned and merged technology, the PHD

filter can effectively process the features when they are

unevenly distributed on the whole space or even aggregated

in a small region, which may influence the performance of

the estimation.

From the physical model we consider the whole group set

to have the same motion vector. According to this motion

model we calculate the average state of the targets as the

ego-motion vector at frame k.

µk = [∆xk,∆yk,∆βk]
T (27)

where (∆xk,∆yk,∆βk) is the mean of the state set.

Since the PHD filter estimates the whole set’s motion

vector within the RFS framework, µk is not only used to

calculate the trajectory of the vehicle at frame k, but also

used to initialize the parameters of the birth models at frame

k + 1.

In this paper, the PHD filter is used as follows: Suppose

at frame k there are a total number of n associated feature

pairs between two continues frames, the ego-motion vector is

calculated as µk from the previous estimations, the proposed

method considers previous frame’s estimated targets’ set as

the existed targets with corresponding weights, the features
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in frame k are considered as the birth targets (the position

parameters are initialized by the coordinates of the points,

the other parameters are initialized by the previous estimated

motion vector µk), the features in frame k+1 are considered

as the measurements to the PHD filter. Finally, the PHD filter

calculates the targets state and discards the clutter under the

RFS framework. This is how the PHD filter works. However,

in our previous work [5], the PHD filter recorded each

frames estimated targets in the system as the existed targets

and used the pruned and merged technology to distinguish

the effective targets. Since a single camera cannot provide

depth information of the features, the PHD filter in this

paper uses data from three consecutive frames. Otherwise,

the inaccurate measurements may influence the performance

of the estimation.

The differences between our approach and visual odome-

try using Kalman filter (tracking individual features) are as

follows:

First, the Kalman filter is only used to track individual

targets. A matching process is required before using the

Kalman filter. Even though the features which have been

matched may avoid the data association problems, the false

features pairs still influence the estimation while the PHD

filter can distinguish the false features as clutters according

to the random set statistics. Second, the feature’s life cycle

in the tracking process is short (some features may only be

matched once in two consecutive frames and disappear later).

The Kalman filter cannot calculate the optimal estimate in

such conditions. In our approach, we calculate the optimal

estimate by updating the PHD filter according to the birth

models and the survival models in consecutive frames within

the whole process, which continues to provide the optimal

estimation at each frame. Third, the Kalman filter is neither

able to aggregate measurements nor to separate one mea-

surement to multiple targets. It needs a one-to-one relation

between real measurements and expected measurements,

solved by data association. The PHD filter overcomes this,

as it is an n-to-m mapping, which is a robust way for

tracking group targets in cluttered environments. It calculates

the average of each target’s state to acquire the whole set’s

motion vector within the RFS framework.

Since equation (21) is nonlinear, we use the GM-EK-PHD

filter to estimate the state which is very similar to the GM-

PHD. More details about EK-PHD can be found in [21].

V. EXPERIMENTAL IMPLEMENTATION AND EVALUATION

The visual odometry algorithm described in this paper has

been implemented on a Core 2 Duo 3.0Ghz computer. An

iPhone4 platform is used to record data at 30 frames/s which

included GPS, gyro and images with a resolution of 480 ×
640. All sequences correspond to real traffic conditions in

urban environments with pedestrians and other cars. In the

experiments, the vehicle was driven with an average velocity

of 50km/h.

As can be observed, we also use the RANSAC (based

on the least squares method) toolbox to estimate the ego-

motion vector [25]. The RANSAC toolbox is public software

(a) (b)

(c) (d)

Fig. 3. Aerial view of the path

in Matlab, it combines the non-linear least square method

and RANSAC together to estimate the rotation angle and

translation vector in 2D Cartesian space. More details can

be found in [25]. In this paper, we utilize a standard Kalman

filter to estimate the RANSAC results in order to remove

noise. The inputs for the RANSAC are the matched feature

pairs while the inputs for the PHD filter are the same but

without association. Assuming the whole features contain

30% outliers to fit the RANSAC model, a dead reckoning

method [26] is used to calculate the trajectory according to

the ego-motion vector provided by the RANSAC algorithm

(after filtering techniques) and the PHD filter.

Fig. 3 and Fig. 4 show the result of our approach. Fig. 3

shows an aerial view of the area where the experiment was

conducted [27]. Fig. 4 illustrates the 2D trajectory estimated

by the visual odometry algorithm presented in this paper

compared with RANSAC algorithm. From Fig. 4 we can see

that our approach provides good robustness under real traffic

scenarios.

Since the feature pairs’ locations in vehicle coordinates

may not be correct (our transformation is only active for

those features on the road while others may fail, the reason is

that we use a single camera which is fixed at a certain height

with a predefined orientation to the ground, it needs certain

conditions to reconstruct the location), the estimated results

on Fig. 4 may have certain bias from its real status during

the visual odometry process, which can be seen from the

image. The other reason why the bias exists on Fig. 4 might

be from the rotation estimation. Compared with our previous

work, the rotation angle is estimated according to the non-
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TABLE I

PERFORMANCE OF THE ALGORITHM

RANSAC PHD
Index Size Distance Frames Distance error Distance error

a 480× 640 1281m 3510 24m(1.8%) 28m(2.1%)

b 480× 640 413m 1500 38m(9.2%) 27m(6.5%)

c 480× 640 950m 1800 135m(14.2%) 47m(4.9%)

d 480× 640 4078m 6600 458m(11.2%) 376m(9.2%)
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Fig. 4. Visual odometry result

linear mapping from the PHD filter’s motion equation and

the corresponding measurement equation, the precision of

the rotation estimation is lower than the rotation angle which

was directly acquired from the gyroscope. However, the PHD

filter still leads to a good robustness compared with the

RANSAC approach.

Table I summarizes the results for the data set. The index

illustrates the experiments on Fig. 4 and the distance is

the length of the experiments conducted. In this paper, the

distance error means the distance between the estimated

location and the GPS location in the end.

These results show that better accuracy can be obtained

with the PHD filter compared with the RANSAC method.

Fig. 5 illustrates three benefits compared with RANSAC

in visual odometry:

1) RANSAC has been established as the standard method

for motion estimation in the presence of outliers (false

features). RANSAC achieves its goal by iteratively se-

lecting a random subset of the original data. However,

the PHD filter treats the false features as clutters within

the RFS framework by using the dynamics model

(a) SIFT features in image coordinates
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Fig. 5. SIFT feature pairs and the PHD estimation results

(physical laws of motion).

2) From Fig. 5(b) we can see that there exist feature

(or target) aggregation, which means that a small

region contains lots of features (targets). This phe-

nomenon may influence the estimation results since

these features may not be effectively chosen according

to RANSAC. However, with the pruning and merging

approach in PHD filter, the estimated targets are uni-

formly distributed in the whole space and contribute

with the same importance to the result.

3) It is difficult for RANSAC to remove features that

were originating from moving objects. These features

can influence the precision of the results. However,

within the RFS framework, the PHD filter propagates

the posterior intensity, a first-order statistical moment

of the posterior multiple-target state at each frame.

According to the dynamic system model (equation

565



(13)), it can utilize the estimated state to reduce the

influences from those features.

4) There must be prematched feature pairs in RANSAC.

As a matter of fact, most visual odometry methods

need prematching, such as using Harris corner features

[28]. The system should have the same number of fea-

ture pairs on two consecutive frames and then calculate

the motion vector. However, our PHD visual odometry

system, which can easily be applied to these visual

odometry systems (focus on features, not the optical

flow) since the PHD filter avoids the data association

problem and also due with different number of features

at each frame without concerning the rough feature

preprocessing approaches. This insures that it is theo-

retically possible that there is no loss of information

from the original measurement set compared to other

methods which focus on features.

The results of our experiments indicate that the algorithm

performs robustly in the presence of pedestrians, vehicles

and shadows on the road.

VI. CONCLUSION

Visual odometry using a monocular camera in urban

scenes is challenging due to a large amount of outliers. The

clutter from falsely matched features and moving objects

cause the results to deviate from the real status. In this

paper, an approach of PHD filtering under RFS framework

is presented. In comparison to the earlier works, this con-

tribution is among the first to apply a PHD filter to visual

odometry in real traffic scenes. With this, visual features are

considered as a group target – we then utilize the average

of each target’s state to approximate the ego-motion vector

since all targets should have the same motion vector in the

whole group set within the RFS framework. Compared to

other approaches, our approach presents a recursive filtering

algorithm that provides dynamic estimation of multiple-

target states in the presence of clutter and high association

uncertainty. The evaluation results show that the algorithm

achieves robustness under different scenes.

Future work should include other sensors such as laser,

stereo cameras and wheel sensors to improve the estimation

precision and robustness.
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