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Abstract— In this paper, we propose a framework for intu-
itive task-based programming of robots using geometric inter-
relational constraints. The intended applications of this frame-
work are robot programming interfaces that use semantically
rich task descriptions, allow intuitive (re-)programming, and
are suitable for non-expert users typically found in SMEs. A key
concept in this work is the use of CAD semantics to represent
geometric entities in the robotic workcell. The robot tasks
are then represented as a set of geometrical inter-relational
constraints, which are solved in real-time to be executed on the
robot. Since these constraints often specify the target pose only
partially, the robot can be controlled to move in the constraints’
null space in order to handle external disturbances or further
optimize the robot’s pose during runtime. Geometrical inter-
relational constraints are easy to understand and can be intu-
itively specified using CAD software. A number of applications
common in industrial robotic scenarios have been chosen to
highlight the advantages of the presented approach vis-à-vis
the state-of-the-art approaches.

I. INTRODUCTION

Current industrial robotic solutions are optimized for large
production sizes and structured environments. They require
the end-user to have expertise in robotics and cannot easily
be re-programmed. This design is not suitable for small and
medium sized enterprises (SMEs), where environments are
largely unstructured and product cycles are short. Our aim
is to enable a robotics non-expert to use the robotic system.
Hence, an important aspect that we consider for the design
of our framework is the level of intuitiveness in robot task-
specification.

Most robot tasks do not have very strictly defined goals
(Fig. 2), e.g., pick-and-place tasks where the robot grasps
a cylindrical object at its rim (Fig. 2c). There are multiple
target poses that can accomplish this task, and there is even
more redundancy when these poses are mapped to robot
configurations. From the viewpoint of intuitiveness, it is
important for non-expert users to be able to specify tasks by
referring to manipulation objects and their properties rather
than domain-specific knowledge such as poses, Euler angles,
or robot configurations (Fig. 1).

Geometric constraints are often used in CAD software to
describe relations between parts in an assembly. This in-
cludes constraints such as the distance between two surfaces,
the angle between two lines, or the matching of axes of two
holes. In our proposed approach, geometric inter-relational
constraints can be used to specify high-level robot tasks in an
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Fig. 1: Intuitive interface that allows users to specify se-
mantically rich descriptions of robot tasks using geometric
constraints.

intuitive, robot-independent way. Their mapping and execu-
tion on the low-level control of a robot system is an important
aspect presented in this work. In order to enable the low-
level robot control system to understand information at this
abstract level, we need semantic descriptions that describe
the objects, the goals, the robot system, the environment,
and common and domain-specific knowledge. Using these
models, the semantic task-specific constraints are translated
to constraints on the robot’s pose.

There are several standard and well-understood approaches
for controlling robots to fulfill tasks such as simple po-
sitioning, trajectory following or pick-and-place operations
in structured or controlled environments. Some of these
tasks are even supported by the standard commercial robot
control software packages provided by robot manufacturers.
However, these approaches focus on a complete specification
of the robot’s target poses and trajectories, rather than a
semantic definition of the task. This makes it difficult and
computationally expensive to re-calculate robot poses based
on variations in the scene during task execution.

The proposed framework is based on a composable struc-
ture where several constraints, each describing a robot task or
behaviour, can be combined. The framework supports several
types of constraints such as temporal (e.g., picking before
placing), spatial (e.g., reachability, collision avoidance) or
logical (e.g., required objects present) constraints. Some
constraints arise from the task definition (e.g., assembly
’mating’ constraints), others from aspects of the robot and
the workcell (e.g., obstacles, joint limits). These constraints



(a) Point welding (b) Seam welding

(c) Grasping a cylindrical
object at its rim

(d) Assembly of two ob-
jects

Fig. 2: Specification of geometric inter-relational constraints
for different use-cases

can be specified at the pose or velocity levels in configuration
space (q) and operational space (x). Using the null-space of
geometric constraints, the robot pose is further optimized to
satisfy the constraints posed by the robot’s kinematics and
the workcell chosen for execution.

II. RELATED WORK

The essential elements of our work are inspired by ideas
such as constraint-task based control [1], operational space
control [2], instantaneous constraint-based task specification
framework [3], robot skills definitions [4], geometric con-
straint solving for CAD models [5] and intuitive interfaces
for robot programming [6], [7].

In [4], [8], the authors presented an approach for re-
useable hardware-independent skills for robots. Rather than
using CAD semantics, task-based programming approaches
may use 3D pointing devices or other novel interfaces to
program robots intuitively [9], [10], [6].

An approach for representing coordinate frames and geo-
metric relations between them, along with an approach for
using it in robotic applications was presented in [11], [12].

The instantaneous constraint-based task specification
framework (iTaSC) [3] defined robot tasks using a definition
of reference frames for the objects and features. It also
featured an approach for representing and handling geometric
uncertainties as a part of the task specification. In [13], the
authors presented an extension of iTaSC that supports non-
instantaneous task specifications and inequality constraints.
In [14], the authors presented an alternative to iTaSC that
separates task specification and execution concerns.

The idea of operational space control and its extensions for
redundant robots (e.g., pose optimization) was introduced in

[2] and extended for multiple end effectors and whole body
control in [15]. In [16], the authors presented an approach
where different manipulation primitives can be specified for
different robot axes and combined together in the control
framework. A hierarchical constraint-based task specification
framework (similar to [15]) was presented in [1], where
task definitions need not be specific to one robot axis and
priorities between tasks can be defined. In this approach, the
solutions from lower priority tasks are propagated to higher
priority tasks, where they are merged by projection into the
null-space of the higher priority task.

Our approach for intuitive robot programming presents
three important contributions with respect to the state of art.
Firstly, we present an approach that follows semantic def-
initions (using ontologies) from CAD-based representation
of geometries, to robot execution and control. Hence, robot
tasks can be defined at a semantic level using intuitive geo-
metric constraints between geometrical entities and translated
into low-level constraints on the robot’s pose. Secondly, we
go one step further than frame-based definitions of robot
tasks [11], [12] and define constraints between the geomet-
rical entities (e.g., points, curves, surfaces) that compose
the manipulation objects and the robotic system. Finally,
we propose to have a combination of the approaches from
[2], [15], [1] and [3], [13], where several constraints can
be minimized together and priorities between tasks can be
specified and handled using the null-spaces of constraints.

III. OVERVIEW

We choose 4 typical industrial robotic scenarios for
demonstrating and evaluating the proposed approach (Fig. 2):
(a) Point welding scenario, where the robot is supposed to
weld an object at a user-specified point. This task fixes
the position of the welding tooltip (Fig. 4). However, its
orientation is not fixed and can be optimized during runtime
(b) Seam-welding scenario, where the welding tooltip should
move along a user-specified line on the welding workpiece
(Fig. 4). Not only the orientation of the welding tool but
also its position along this line lies in the null-space of
the constraint. (c) Grasping scenario, where a cylindrical
object should be grasped at its rim (Fig. 5). Any point along
the object’s rim is a valid grasping pose. The orientation
of the gripper is adjusted in a way that it is tangential to
the cylinder’s rim. (d) Assembly scenario, where constraints
specified between the manipulation objects determine their
relative poses in the final assembled object (Fig. 6).

The tasks for all chosen scenarios can be expressed in
terms of geometric inter-relational constraints between the
manipulation objects. Furthermore, they are underspecified
tasks and the robot’s pose can be optimized within the null-
space of these constraints at runtime.

IV. MODELING OF GEOMETRIC CONSTRAINTS

The distinction between task-level constraints and
workcell-specific constraints is an important concept in
our approach. Hence, geometric constraints are modelled
at different levels: task constraints at the semantic level
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Fig. 3: Geometric constraints enforced by primitive shapes:
Unconstrained axes (with x-axis in red, y-axis in green, and
z-axis in blue) are indicated by arrows.
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Fig. 4: Geometric constraints for point and seam welding

(Sec. IV-A), constraints on the robot’s pose (Sec. IV-B) and
workpiece pose constraints (Sec. IV-D). In order to facilitate
the combination and transformation of constraints between
these levels, we use semantic descriptions (Sec. IV-C).

A. Geometric Constraints at Task Description Level

Robot tasks are expressed as geometric constraints be-
tween the manipulation objects and may be underspecified.
Typical underspecified tasks for the applications targeted in
this paper are illustrated in Fig. 2, where each robot pose
satisfies the constraints required by the scenario. The task
specification defines user constraints that are based on only
the geometric properties of the manipulation objects (Fig. 3),
which are then translated into constraints on the robot’s pose
(solver constraints). Figs. 4, 5 and 6 illustrate these user and
solver constraints for the scenarios presented in Fig. 2.

B. Mathematical Models for Geometric Constraints

A rigid non-articulated object (workpiece, robot end-
effector) can be decomposed into a collection of primitive
geometric shapes in a particular configuration. Constraints
on each of these geometric shapes add constraints on the
overall pose of the object.

Each primitive shape Pi enforces a set of constraints
(Sti,SRi) on the position (t) and orientation (R) of the
object respectively. Each primitive shape type also specifies
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Fig. 5: Geometric constraints for grasping a cylindrical object
at its rim
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Fig. 6: Geometric constraints for the assembly of two work-
pieces

its null-spaces (or free-spaces). Each row of Sti and SRi

contains a direction along which the constraint has been
set. Examples of constraints set by each primitive shape are
shown in Fig. 3 and explained below:
• Plane (point(p), normal(n)): St = [n], SR =

[n⊥1;n⊥2] (where n⊥1 and n⊥2 are ⊥ to n).
• Cylinder (point(p), normal(n), radius(r)): St =

[n⊥1;n⊥2], SR = [n].
• Sphere (point(p), radius(r)): St = [n⊥1;n⊥2;n],

SR = φ

Geometric constraints can be specified between different
types of geometrical entities. Table I lists the constraints that
are most relevant to our target scenarios, and are supported
by our implementation.

C. Semantic Description of Geometric Constraints

An important aspect of this work is the representation
of all entities at a semantic level, using the Web Ontology
Language (OWL) which is a standard supported by the World
Wide Web Consortium (W3C).



TABLE I: Summary of supported geometric constraints

Fixed Constrained Constraint (C) Controlled Space (S) Null Space (N ) Cost Function (CostC)

Plane1 Plane2 Distance (d) SR : [n1⊥1
;n1⊥2

]
St : [n1]

NR : [n1]
Nt : [n1⊥1

;n1⊥2
] [nT

1 (p1 − p2);nT
2 (p1 − p2); 1− nT

1 n2]

Plane1 Plane2 Parallel SR : [n1⊥1
;n1⊥2

]
St : [ ]

NR : [n1]
Nt : 1

[
[n1⊥1

;n1⊥2
]Tn2

]
Line1 Line2 Parallel SR : [n1⊥1

;n1⊥2
]

St : [n1⊥1
;n1⊥2

]
NR : [n1]
Nt : [n1]

[
[n1⊥1

;n1⊥2
]Tn2

]
Line1 Line2 Coincident SR : [n1⊥1

;n1⊥2
]

St : [n1⊥1
;n1⊥2

]
NR : [n1]
Nt : [n1]

[
[n2⊥1

;n2⊥2
]Tp1; 1− nT

1 n2

]
Line1 Point2 Coincident SR : [ ]

St : [n1⊥1
;n1⊥2

]
NR : 1
Nt : [n1]

[
[n1⊥1

;n1⊥2
]Tp2

]
Line1 Point2 Distance (d) SR : [n1⊥1

;n1⊥2
]

St : [ ]
NR : [n1]
Nt : [n1]

p =
[
[n1⊥1

;n1⊥2
]T(p1 − p2)

]
CostC = (d− ‖p‖)p

We use an ontological description of CAD semantics, i.e.,
a boundary representation (BREP) of points, curves, surfaces,
and volumes to describe the geometric entities in the robotic
workcell (manipulation objects, robots and tools, workcell
layout, etc.) [17]. The robot tasks are also semantically
described [7], containing the associated manipulation objects
and the corresponding geometric inter-relational constraints
as their parameters.

D. Geometric Constraints used for Object Recognition
Often the objects used in robotic scenarios are symmetric,

which leads to underspecified object poses. [18] presents
an approach for estimation of underspecified object poses,
which we extend to use the constraint formulations presented
in this paper (Table I). When executing task constraints a
workcell, the poses of manipulation objects are obtained
from this object recognition module, which returns not only
the underspecified poses but also their geometric null-spaces.

V. EXECUTION OF CONSTRAINT-BASED ROBOT TASKS

Upon instantiation of a task on a workcell, the ontolog-
ical database is queried to obtain the set of task-specific
geometric constraints and workcell specific manipulation
constraints. These constraints need to be solved to generate
poses and null-spaces which will be used for execution on
the robot.

A. Solver for Geometric and Kinematic Constraints
In this section, we formally define the robot manipulation

problem and then derive a mathematical optimization proce-
dure, whose solution generates the robot configurations that
form the waypoints of the final robot trajectory.

Given are a set R of kinematic structures and a set O
of objects to be manipulated. A kinematic structure can
be thought of as a robot with a tool; if a robot carries
multiple tools, each branch forms one kinematic structure.
A kinematic structure R ∈ R is a tuple (FK,P), composed
of a forward kinematic function FK that maps from an
n-dimensional configuration space to the pose of its tool
Rn 7→ SE(3) and a set of primitive shapes P.

A primitive shape P ∈ P may be one of the shapes
defined in Sec. IV-B and serves as a useful reference for

geometric relations, e.g. the axis of a drill head, or the center
of a parallel gripper. Analogous to kinematic structures,
a manipulation object O ∈ O is also composed of a
configuration and a set of primitives shapes, given by a tuple
(x ∈ SE(3),P).

A manipulation problem is then defined by a set of
constraints C that relate primitive shapes of both kine-
matic structures and objects. Unlike the object recognition
component, where constraints refer to a single object and
are amenable to a closed-form solution [18], we follow a
more general minimization of a cost function for the robot
manipulation problem. Each constraint C ∈ C defines a cost
function Cost : SE(3) × SE(3) 7→ Rc that depends on the
poses of two shapes and yields a zero vector iff the constraint
is fulfilled.

The general manipulation problem is defined in Eq. 1, with
q denoting the stacked configuration space of all kinematics:

minq

∑
R∈R

∑
C∈C

Cost2C (FKR(q),x) = minq |F (q)|2 (1)

The cost of a kinematic configuration can be viewed as a
vector-valued function F : Rn 7→ Rc (Eq. 1). To solve for a
kinematic configuration q, F (q) is optimized in a non-linear
least squares minimization. In the current implementation,
we apply the simple Gauss-Newton method, which only
requires the Jacobian J i,j = δFi/δqj to be computed.

To allow a stable and efficient numerical implementation,
cost functions must be designed such that, instead of scalar
values, they return a cost vector Rc, whose values reflect
the c locked degrees-of-freedom and should in general be
independent. Furthermore, costs of translational and rota-
tional distances, where no obvious metric exists, should be
weighted to the same order of magnitude. Only under these
conditions, the null space can stably be computed to allow
further optimization of the robot pose, distance to obstacles,
and length of the trajectory. An appropriate set of cost
functions is given in Table I.

B. Using the Kinematic Null-space
In almost all robot tasks, only a few degrees-of-freedom

are required to solve an exact geometric task, while the rest



is used to achieve a qualitative, lower-priority goal. Some of
these lower-priority goals may be formulated as optimiza-
tion targets, e.g., a robot posture far from singularities or
joint limits, a waypoint close to a previous one for shorter
trajectories, or to maximize the distance to obstacles. Other
lower-priority goals may be specific to the domain and/or
the scenario, e.g., optimization of angles for point welding
or grasping a particular object, or tracking the control signal
from visual servoing. It is clear that the null-space of the
exact solution of the geometric constraint can be used for
further offline optimization, automatic online control, or
interactive jogging by an operator.

Similar to null-space control applications [1] that operate
on a regular Jacobian, our generalized Jacobian of the
kinematic cost function F allows simple computation of the
null-space projection matrix N .

N(q) = 1− J†(q)J(q) (2)

This null-space projection maps an arbitrary control signal
∆q from the kinematic domain to a robot motion orthogonal
to the constraints C by multiplying N(q)∆q. Of course, N
is only a local linearization valid for small ∆q, so larger
steps should be applied through multiple iterations. ∆q can
represent all the above types of null-space optimization:
for interactive jogging, ∆q is set to a unit vector, for
posture optimization, a repulsive force from the joint limits
may be implemented. Likewise, ∆q may represent a local
disturbance from control frameworks, e.g., visual servoing.

VI. EVALUATION

We evaluated our approach on a selection of classic
industrial robotic scenarios in simulation and in real-world
setups (using a 6DoF industrial robot). While the constraint
resolution parts of our implementation are new, inverse
kinematics, trajectory generation and low-level robot control
use the Robotics Library1 by Rickert [19]. A video of the
implementation of these applications on the robotic workcell
can be found at http://youtu.be/qRJ1JmNoFEw

A. Welding

In the point welding scenario (Fig. 2a), the tip of the
welding gun must exactly coincide with the target point on
the object (Fig.4). This is represented by task constraints:
• Point-Point Coincident Constraint: PointA of work-

piece is coincident with PointB of welding gun tool.
In this example, the orientation of the welding gun should
be adjusted by an operator familiar with point welding. The
operator was provided a simple interface, to jog the robot in
the 3 degrees-of-freedom null-space, while always fulfilling
the constraint (Fig.7a).

In the seam welding scenario (Fig. 2b), the tip of the
welding gun must lie on the target line on the object (Fig.4).
The task constraints on the robot’s pose are:
• Point-Line Coincident Constraint: LineA of work-

piece is coincident with PointB of welding gun tool.

1http://www.roboticslibrary.org/

In this simplified experiment, the orientation of the welding
gun is unconstrained. The operator could choose the orien-
tation as well as the position along the line by jogging the
robot in the null-space of the constraints, while the controller
ensured that the constraints (Fig.7b) are always satisfied.

B. Grasping of cylindrical objects
In this scenario, an industrial manipulator is supposed

to grasp a cylindrical object at its rim using a parallel
gripper (Fig. 2c). This task can be defined purely with CAD
constraints (Fig. 5), without any scenario-specific parameters.
These constraints are then translated into the following
constraints on the robot’s pose:
• Line-Plane Coincident Constraint: PlaneB⊥, which is

perpendicular to PlaneB contains AxisA
• Line-Point Distance Constraint: PointB , which is the

point of intersection of AxisB1 and AxisB2, is at a
distance radius(CylinderA) from AxisA

• Plane-Line Distance Constraint: AxisB2 is at a dis-
tance 0 from PlaneA

While the above constraints need to be fulfilled exactly, a
residual degree of freedom is available as a path along the
rim of the cylinder (Fig. 7c). Note that this path cannot be
solved by operational space constraints [1], but requires our
more general formulation of geometric constraints C. In this
scenario (Fig. 7c), where we solve the constraints to obtain
the target pose closest to the previous robot waypoint.

C. Assembly
In this scenario (Fig. 2d), two workpieces from a gearbox

need to be assembled together. This task consists of 3 steps:
(a) picking object A, (b) moving to object B, and (c)
assembling the objects together. The parameters for each
of these steps can be specified using geometric constraints
between the assembly objects (A and B, Fig. 6) and the
parallel gripper in Fig. 5 (B):
Pick Approach Constraints:
• Line-Line Coincident Constraint: AxisA is coincident

with AxisB1 of Gripper.
• Plane-Plane Distance Constraint: PlaneA is at a dis-

tance 0.1m from AxisB2 of Gripper.
Place Approach Constraints:
• Line-Line Coincident Constraint: AxisB is coincident

with AxisB1 of Gripper.
• Plane-Plane Distance Constraint: PlaneB is at a dis-

tance 0.1m from AxisB2 of Gripper.
Assembly Constraints:
• Line-Line Coincident Constraint: AxisA is coincident

with AxisB1.
• Plane-Plane Distance Constraint: PlaneB is at a dis-

tance 0 from PlaneB .
Fig. 7d shows the execution of this scenario. The grasping

and assembly poses of the objects are only partially defined,
where the rotation along the AxisA and AxisB lies in the
null-space. The robot can be jogged in the null-space to
choose an orientation as required by other constraints from
the workcell (e.g., reachability, singularities).

http://youtu.be/qRJ1JmNoFEw
http://www.roboticslibrary.org/


(a) Point welding (b) Seam welding (c) Grasping (d) Assembly

Fig. 7: Execution of constraint-based tasks in a robotic workcell. CAD semantics allow these tasks to be defined in terms
of geometric constraints between features of robot tools and objects, allowing intuitive robot programming.

VII. CONCLUSION

This work presents an approach for semantically rich,
intuitive definitions of under-specified robot tasks using
geometric constraints. The mapping and execution of these
task descriptions on the low-level robot controller is an
important contribution of this paper. Furthermore, the task-
based constraints can be combined with environment and
robot constraints, by utilizing the null-space of geometric
constraints. Thereby the robot pose can be optimized ac-
cording to the scenario, while always fulfilling the task
constraints.

Supporting more geometric constraint types and modeling
environment constraints, e.g., collision avoidance could be
future additions to this work.
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