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Abstract— In this paper, we present an integrated approach
to knowledge representation for cognitive robots. We combine
knowledge about robot tasks, interaction objects including their
geometric shapes, the environment, and natural language in a
common ontological description. This description is based on
the Web Ontology Language (OWL) and allows to automatically
link and interpret these different kinds of information. Semantic
descriptions are shared between object detection and pose
estimation, task-level manipulation skills, and human-friendly
interfaces.

Through lifting the level of communication between the
human operator and the robot system to an abstract level,
we achieve more human-suitable interaction and thus a higher
level of acceptance by the user. Furthermore, it increases the
efficiency of communication.

The benefits of our approach are highlighted by examples
from the domains of industrial assembly and service robotics.

I. INTRODUCTION

Knowledge representation for robotics is about connecting
abstract representation with the “real world”. Moreover, if
a robot is deployed in an environment in which it will en-
counter humans or even other autonomous robots it will have
to have flexible representations which allow an alignment of
its own representations with those of the agents around it.

One can call this approach ubiquitous semantics which
takes inspiration from the semantic web initiative. Using
ontologies, one can tackle the problems which knowledge
representation poses for modern robotics.

Ubiquitous semantics means that all relevant aspects of
robot systems and their tasks are described in a way that
preserves their inherent meaning. These semantic descrip-
tions must be flexible and at a sufficiently generic level. This
allows robots to share knowledge about how tasks are to be
performed and completed. The descriptions are also flexible
enough to describe the world in which the robot is moving
but generic enough for a variety of environments and most
importantly to allow for the non-deterministic nature of the
environments in which robots are deployed, thus tackling
the so-called “open world” problem. Also, such generic
and flexible representations will be more amenable to the
plasticity of human communication.
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(a) Excerpt of semantic process description. Boxes containing a
yellow circle represent classes, purple rhombi represent instances
of these classes.

(b) Exploded view (c) Assembly steps

Fig. 1: Industrial assembly of four objects in three steps
building the core part of a gearbox. Example from [1].

The remainder of the paper is structured in the following
way. We will address the related work in the next section.
This will be followed by a more general discussion of
knowledge representation – specifically for robots. Against
this background, we will discuss object detection, pose
estimation, task execution, and human-friendly interfaces.
We conclude with a few remarks on the general use of our
ontology based knowledge framework.

II. RELATED WORK

Related work applies concepts from knowledge representa-
tion [2], symbolic task planning [3], and planning for natural
language dialogs [4].

Many modern approaches of knowledge representation in
robotics have taken the semantic web initiative as a source
of inspiration. Those approaches make use of ontologies to
organize knowledge in autonomous and intelligent systems.

The RoboEarth initiative [5] makes use of this approach
with the goal of achieving effective sharing of knowledge
[2], data [6], and processing resources [7] among robots.
This is often referred to as cloud robotics, and has estab-
lished advantages regarding memory and processing limits.
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Fig. 2: A visualization of a robot workcell and an excerpt of the corresponding semantic description. Two velocity constraints
(C1 and C3) and a workspace constraint (C2) have been specified.

Fig. 3: Semantic description of a finite cylinder based on a boundary representation.

Additionally, models acquired by one robot can be re-used
by another one.

There are other means by which robots can gain and apply
knowledge. These can be categorized as “physical symbol
grounding”, “grounding words in action” and “social symbol
grounding” [8].

III. KNOWLEDGE REPRESENTATION

In order to endow robots with advanced cognitive capa-
bilities, it is necessary to make all relevant aspects of their
properties, tasks, and environment known to them. Encoding
and interpreting knowledge about these different fields allows
them to assess the applicability of their skills and to link their
actions to a wider context.

In this section, we briefly summarize our methodology for
semantically describing processes, related interaction objects,
and their environment. We design a common description
language based on the Web Ontology Language (OWL),
which uses class taxonomies, instances of these classes, and
properties for classes and instances.

A. Semantic process descriptions

Semantic process models are partially ordered sequences
of tasks. Each type of task specifies its pre- and postcondi-
tions, and a set of parameters, of which some must be defined
and others might be optional. An underspecified task can
be fully parameterized through automatic reasoning, when a
process model is assigned to a robot system, by combining

the requirements of tasks with the capabilities of the selected
system [1].

Fig. 1a depicts an excerpt of the semantic description
of an industrial assembly process, which is visualized in
Fig. 1b and Fig. 1c. It contains three tasks, i.e., Assem-
bleBearingTreeTask, AssembleBearingPipeTask, and Assem-
blePipeTreeTask. Exemplarily, the associated object models
for the AssemblePipeTreeTask are shown. The order of the
tasks is given through PartialOrderingConstraints, which
specify that the AssemblePipeTreeTask has to be executed
after the other two tasks have been carried out.

B. Semantic environment description

Semantic environment descriptions encode the compo-
sition of physical entities of the real world, e.g., robots,
tools, sensors, or tables, and abstract meta-information, e.g.,
available skills or environmental constraints [1].

The semantic description of the workcell in Fig. 2 specifies
a robot, its base, a table, and an RGBD sensor. These entities
are linked with the workcell instance FortissWorkcell through
instances of type FixedJoint, e.g., robot-base joint. The robot
workspace is set to be constrained to the given cuboid
(constraint C2), for which two subregions with different
velocity limits have been defined (constraints C1 and C3).

C. Semantic object models

Next to basic object properties, e.g., type, name, weight,
material, or bounding box, we are able to semantically



describe the geometric shape of objects using a boundary
representation (BREP) [1], [9]. BREP preserves the exact
mathematical models of contained curves and surfaces. This
enables the system to define and interpret various geometric
interrelational constraints, e.g., coincidence, concentricity,
parallelity, etc., between two objects’ vertices, edges, or
faces [9], [10].

Fig. 3 shows the BREP-based semantic description of a
finite cylinder’s geometry. Selected correspondances between
the visualization on the right and the ontological instances
on the left are highlighted.

IV. OBJECT DETECTION AND POSE ESTIMATION

In this section, we present an approach for shape-based
object detection and pose estimation based on semantic
descriptions of object models. This involves deep object
models that include exact information about the geometric
properties of the object. This approach allows for the de-
tection of symmetrical objects whose pose are inherently
underspecified. Knowledge about sensor noise and manufac-
turing tolerances can also be explicitly included in the pose
estimation step [11].

A. Geometric constraints from primitive shape matching

The object is modeled as a set of primitive shapes P
(e.g. planes, cylinders) based on its boundary representation
(BREP). Each primitive shape Pi ∈ P enforces a set of
constraints (Cpi ,Cni) on the position and orientation of the
object respectively, where each row of Cpi and Cni contains
a direction along which the constraint has been set.

A complete set of primitive shapes is defined as a set where
the constraints fully specify the 3D position and orientation
of the object. A minimal set of primitive shapes is defined
as a set which is complete but removing any primitive shape
from the set would render it incomplete.

Table II presents the list of supported geometric constraints
between primitive shapes, where

ṕ2 = Rp2 + t, ṕ21 = ṕ2 − p1, ń2 = Rn2

1) Feature Vectors for Sets of Primitive Shapes: Corre-
spondences between the scene and model shape primitives
are obtained by matching feature vectors constructed from
geometric properties of the primitive shapes. These feature
vectors not only encode the geometric properties of the
shapes, but also of the relations between the shapes (see
Table I). Minimal sets of primitives from the scene point
cloud are calculated during the pose estimation stage (see
Section IV-B.2), and the distance between the feature vectors
provides a metric for obtaining hypotheses of shape associ-
ations.

B. Constraint Processing for incomplete pose estimation

1) Detection of minimal and complete sets of primitives:
The constraints (Cpi

, Cni
) enforced by each primitive shape

Pi are stacked into two matrices Cp and Cn (each having
3 columns). The constraints are complete if the matrices Cp

and Cn both have rank 3. Fig. 4b shows an example of a
complete set of primitive shapes.

TABLE I: Feature vectors for primitive shape sets

Primitive shape Feature Vector (fv)

Inf. Plane φ
Sphere radius
Inf. Cylinder radius

Plane+Plane
fv(plane1), fv(plane2),
angle(plane1 normal, plane2 normal),
min distance(plane1, plane2)

Plane+Cylinder fv(cylinder), fv(plane),
angle(plane normal, cylinder axis)

Cylinder+Cylinder
fv(cylinder1), fv(cylinder2),
angle(cylinder1 axis, cylinder2 axis),
min distance(cylinder1, cylinder2)

Plane+Plane+Cylinder fv(plane1, cylinder), fv(plane2, cylinder)

Algorithm 1 Detecting object poses using RANSAC

1: Input : [Ps, [[Pm]min]] (set of scene primitive shapes and
minimal sets of model primitive shapes)

2: Output : [T , smax] (best pose estimate with score for
detected object instance)

3: forall Pi ∈ [Pm]min

4: smax ← 0
5: compute shape matching hypothesis (Hi) using fv’s, see

Section IV-A.1
6: calculate transformation estimate Ti for Hi , see Section

IV-B.2
7: compute score si for hypothesis Hi

8: If si ≥ thresh & si > smax

9: T ← Ti

10: smax ← si
11: EndFor

2) Constraint solving for pose estimation: The optimiza-
tion is performed over transformations T that align the object
model to the objects in the scene. The transformations are
represented as 4x = (t, r) where t is the translation and r
is the rotation in axis angle representation.

The optimization function is the absolute value of the
transformation, i.e., minimization of ‖4x‖2. The constraint
functions gi along with their lower and upper bounds (lb(gi),
ub(gi)) are obtained from the primitive shape matching
constraints shown in Table II. The bounds (dmin, dmax) of the
constraints can be used to incorporate the noise in sensor data
or primitive shape fitting errors, as well as manufacturing
uncertainties.

The resulting optimization problem is:

argmin
4x

‖4x‖2

subject to lb(gi) ≤ gi ≤ ub(gi), i = 1, . . . ,m.

This set of equations is then solved using a non-linear least
squares min-max solver (MA27) from [12] using the deter-
ministic non-linear optimization utility from library Coin-OR
(named IPOPT) [13]. If the constraints are complete, the pose
is uniquely defined. Otherwise, the constraint solver returns
one possible solution.
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Fig. 4: Primitive shape groups for different views of an object. Using primitive shape sets, it can be calculated whether an
object’s pose can be fully estimated from a viewpoint. The arrows indicate the expected noise (qualitative only) in estimation
of the primitive shape parameters. (a) the position of the object along y axis is not determined. In (b) and (c) the complete
pose of the object can be estimated. (Note: The detected primitive shapes are highlighted for clarity.)

TABLE II: Summary of supported constraints between primitive shapes

Constraint (i) Cost Function (gi) Bounds (lb, ub) Constrained Spaces

Plane-Plane [nT
1 ṕ21; ńT

2 n1]
lb : [dmin; amin]
ub : [dmax; amax]

Cn : [n1⊥1
;n1⊥2

]
Cp : [n1]

Cylinder-Cylinder [‖ṕ21 − (nT
1 ṕ21)n1‖22; ńT

2 n1]
lb : [d2min; amin]
ub : [d2max; amax]

Cn : [n1⊥1
;n1⊥2

]
Cp : [n1]

Sphere-Sphere [ṕ21]
lb : dmin

ub : dmax

Cn : [n1⊥1
;n1⊥2

]
Cp : [n1]

3) RANSAC based constraint solving for pose estimation:
A shape matching hypothesis Hi consists of a set of associ-
ations between primitive shape sets that can be computed by
matching feature vectors (Section IV-A.1). An algorithm for
pose estimation using RANSAC-like iterations on minimal
sets of primitive shapes is described in Algorithm 1. For
efficient hypothesis verification, we use the approach from
[14] that utilizes geometric information from CAD models
and primitive shape decomposition of scene point clouds.

V. EXECUTION OF CONSTRAINT-BASED ROBOT TASKS

In order to execute a manipulation task in the workcell,
the robot system’s knowledge base is queried to obtain a set
of task-specific geometric constraints. These constraints are
then solved to obtain poses and residual null-spaces and to
generate optimized robot trajectories [10].

In our task-level approach to robot execution, robot tasks
are defined by geometric constraints that relate objects O and
robot manipulators (including their tools) R. A kinematic
structure R ∈ R is a tuple (FK,P), composed of a forward
kinematic function FK that maps to the pose of its tool Rn 7→
SE(3) and a set of primitive shapes P. A primitive shape
P ∈ P may be one of the shapes defined in Sec. IV-A and
serves as a useful reference for geometric relations, e.g. the
grasp point of a parallel gripper. Analogous to kinematic
structures, a manipulation object O ∈ O is composed of a
configuration and a set of primitive shapes, given by a tuple
(x ∈ SE(3),P).

A manipulation task is then defined by a set of constraints
C that refer to primitive shapes of both kinematic structures
and objects. Compared to the constraint resolution scheme in
the object recognition component (Sec. IV-A), we perform a

generic, iterative minimization of a cost function. For that,
each constraint C ∈ C is represented by a cost function
Cost : SE(3) × SE(3) 7→ Rc that depends on the poses
of two referenced shapes and returns a zero vector iff the
constraint is fulfilled. To solve a given manipulation task,
we minimize the stack of cost functions q ∈ Rn 7→ Rc and
obtain a valid robot pose q. To ensure reliable convergence,
cost functions are defined such that they are differentiable
and reflect the correct number of c constrained degrees-of-
freedom [10].

Many robot tasks in manufacturing and service domains
pose constraints on only a few degrees-of-freedom, while
the remaining degrees-of-freedom can be used to fulfill
qualitative, lower-priority goals. Such goals may include the
avoidance of singularities or joint limits, waypoints close
to a previous one for shorter trajectories, or distance max-
imization from obstacles. When cost functions Cost allow
computation of a full-rank Jacobian J , we can compute the
null-space projection matrix N of a task, N(q) = 1 −
J†(q)J(q), where † denotes the pseudo-inverse. Projecting a
lower-priority control signal onto N then allows null-space
optimization of qualitative goals. As an example, the task
of grasping a cylindrical object can semantically be defined
by several coincidence constraints between a parallel gripper
and the object. Based on these constraints, the robot will find
a posture-optimized grasp along the rotational axes of the
object.

VI. HUMAN-FRIENDLY INTERFACES

We aim at reducing the complexity of interacting with
robot systems. But, relying solely on semantic descriptions
would only shift the required expertise for using such sys-
tems from the field of robotics to the field of knowledge



Fig. 5: Partial view of the intuitive interface which is used to
program the robot and create or modify process descriptions.

engineering. Hence, we develop human-friendly interfaces,
which act as a frontend to the semantic backbone.

A. Task-Level Programming Interface

The intuitive programming interface shown in Fig. 5 sup-
ports multiple input modalities: touchscreen, tracked 3D-pen,
gestures, and speech [15]. By using these modalities during
task-level programming, the user can define task parameters.
We semantically describe modality and task parameter types,
so that suitable modalities for certain parameter types can be
automatically inferred and offered by the system [16].

For instance, the parameters objectToPick and objectTo-
PlaceOn can be bound by selecting the desired object from
a list, pointing at the object, or telling its name. This inter-
face also supports the definition of assembly poses, grasp
poses, and approach poses using geometric interrelational
constraints [9], [10].

B. Natural Language Interface

This interface is not meant to support an open world
dialog, but to instruct a robot system to perform a specific
task. Interaction with our robot systems through natural
language requires to map utterances to concepts in our
ontologies, e.g., tasks and objects. We rely on a two-phases
approach.

In the configuration phase, a human expert annotates the
class taxonomies of tasks and objects with links to concepts
in the Wordnet1 ontology. As a second step in this phase, an
OpenCCG2 grammar is automatically generated [17], which
serves as an input to our dialog component. The annotation
has to be done only once for each type of task or object. The
resulting grammar can be shared between all robots using
our software framework. In the runtime phase, our dialog
component uses the generated grammar to parse natural
language input into a logical form, and to interpret it by
mapping it back to concepts in the system’s ontologies.

1) Configuration Phase: Natural language utterances can
be ambiguous. As a result, a naı̈ve one-to-one mapping of an
instruction verb to a type of task would likely fail. Preferably,
all synonyms for a given verb or noun should be considered,

1https://wordnet.princeton.edu
2https://github.com/OpenCCG/openccg
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Fig. 6: Overview of configuration phase

when trying to interpret a command. For this reason, we
annotate the classes in the task and object ontologies with
Wordnet synonym sets (synset). Task classes are annotated
with verb synsets, object classes with noun synsets, and
classes that serve as discriminating features with adjective
synsets.

Fig. 7 exemplarily shows the annotation of a service
robot’s task description called ServeBeverage. It contains the
AnnotationProperty linkedSynset, which links to a particular
synset in the Wordnet ontology, i.e., synset-serve-verb-6.

Declaration(Class(re:ServeBeverage))
Declaration(AnnotationProperty(re:linkedSynset))
AnnotationAssertion(re:linkedSynset re:

ServeBeverage <http://www.w3.org/2006/03/wn/
wn20/instances#synset-serve-verb-6>)

Fig. 7: Excerpt of an annotated semantic task description in
OWL functional syntax linking the task type with a synonym
set of associated verbs.

The grammar generation process takes an OpenCCG
grammar template3 as an input. It contains the static parts
of the grammar, i.e., functions, macros, and category defi-
nitions. The functions and macros are then used during the
generation of the dynamic part of the grammar, e.g., to create
the singular, singular third person, and plural forms of a
verb. Furthermore, the template describes commonly used
words which are not linked with concepts in our ontologies.
For instance, definite and indefinite articles, prepositions, and
pronouns. As a next step, the knowledge base is queried for
all annotated task and object concepts, which results in a set
of ontology concepts and their Wordnet synset annotations.
The verbs, nouns, and adjectives from these synsets are then
added to the grammar. An overview of the configuration
phase in given in Fig. 6.

2) Runtime Phase: The OpenCCG grammar generated
during the configuration phase is used by a dialog component
to parse natural language utterances into a logical form. This
representation is used to analyze a sentence’s structure, and
how the different parts are semantically related to each other,
e.g., which noun is the subject of which verb. Starting from
the logical form, the robot system has to determine, which
task the human operator intends to be executed.

This is achieved by grounding the sentence’s referents in

3http://www6.in.tum.de/˜perzylo/template.ccg

https://wordnet.princeton.edu
https://github.com/OpenCCG/openccg
http://www6.in.tum.de/~perzylo/template.ccg


Speech
Recognition

Dialogue
Management

Speech
Synthesis

Knowledge Base,
World Model

Human
Operator

Task
Assignment /

Execution

Perception

Command 
/ Answer

Disambiguation
Question

Recognized
Task

SeRQL
Queries

Detections

Fig. 8: Overview of runtime phase

the robot’s knowledge base. Verb phrases are considered to
correspond to a task that shall be executed. They have dif-
ferent numbers of associated noun or prepositional phrases,
which form their arguments. They refer to objects the tasks
have to be performed upon. Hence, each argument has to be
grounded in the robot’s knowlege base. The identification
process first searches for all possible task candidates by
matching the used verb with the synsets linked from the
task concepts. This list is narrowed down by filtering out
candidates, which require a different amount of arguments,
or different types of arguments. If a single task could be iden-
tifed, it is selected for execution, otherwise a disambiguation
dialog is initiated [17]. The runtime phase is summarized in
Fig. 8.

VII. CONCLUSION

In this paper, we show how to specify and execute abstract
process descriptions and their tasks, e.g., using geometric
interrelational constraints between involved objects to define
an assembly or grasp pose. The representation of deep object
models, which are required to formulate such constraints on
individual edges or faces, is based on the BREP formalism. It
encodes the exact geometric properties of the objects’ shapes.
Using the knowledge on contained primitive shapes further
improved the performance of our object detection and pose
estimation.

In order to command the robot system through natural
language, we automatically generate grammars to parse and
map utterances to concepts in our ontological taxonomy of
tasks and objects.

Having described all relevant aspects of a robot system and
its tasks in a semantic way (ubiquitous semantics), the system
can benefit from synergy effects created through linking the
available information and reasoning about its implications.
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