
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

 

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Andre Gaschler, Quirin Fischer, Alois Knoll

TUM-I1522

The Bounding Mesh Algorithm



The Bounding Mesh Algorithm

Andre Gaschler, Quirin Fischer and Alois Knoll

June 9, 2015

Abstract

We present an algorithm to generate a one-sided approximation of
a given triangular mesh. We refer to such an approximate mesh as a
bounding mesh, which includes the original mesh and has fewer vertices.
Likewise, an inner bounding mesh is defined as an approximate mesh that
is included by a given mesh. Our proposed bounding mesh algorithm
performs iterative edge contractions and can generate both types of ap-
proximation.

Contrary to regular, two-sided mesh approximation, which is a well
studied subject in computer graphics, our algorithm is novel and one of
a handful approaches to one-sided mesh approximation. While we are
the first to apply bounding meshes to safe collision detection, path plan-
ning, and robot motion planning, applications range further to computer
geometry and computer graphics. The bounding mesh algorithm helps
pre-processing complex geometries and increases the efficiency of existing
geometric algorithms, especially those that search in a bounding volume
hierarchy. It can speed up search, intersection and inclusion detection, as
well as silhouette, clipping, and other operations, acting as an intermedi-
ate level of approximation between coarser bounding boxes or bounding
spheres and the exact mesh.

Furthermore, the bounding mesh algorithm combines well with ap-
proximate convex decomposition to generate a bounding set of convexes
with very few vertices, which is an efficient data structure for intersection,
distance and normal computation, as well as other geometric operations.

1 Introduction

Most computer geometry algorithms operate more efficiently when bounding
volume hierarchies of a given mesh are available. Bounding boxes, bounding
spheres, convex hulls, axis-aligned boxes, or discrete orientation polytopes have
long been used to simplify broad-phase queries in collision checking [8, 13] and
other problems. While these approximations are potentially far from the original
mesh, a bounding mesh (Fig. 1b) offers a fine approximation whose distance to
the original mesh can be controlled. Importantly, the approximation is one-sided
(or, single-sided), which is necessary for applications such as safe collision and
inclusion detection, upper and lower distance approximation, motion planning,
and many geometric algorithms that operate on level-of-detail models.

Bounding meshes can rather easily be generated by iterative edge contrac-
tion with additional constraints to achieve a local one-sided approximation. In
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(a) V = 9296 (b) V = 2221 (c) V = 220

Figure 1: Complex meshes (a) are simplified effectively by our new bounding
mesh (b) and bounding sets convex polyhedra (c) algorithms.

addition, the bounding mesh algorithm integrates well with approximate con-
vex segmentation [12] to generate bounding sets of convex polyhedra for a given
mesh (Fig. 1c). A bounding set of convex polyhedra has fewer vertices than a
convex decomposition and therefore increases the efficiency of many geometric
algorithms. As an example, bounding sets of convexes allow safe and efficient
robot motion planning. Since collision and distance queries require only convex–
convex queries with few vertices, computation can even be guaranteed within
real-time limits.

While we first sketched the idea of bounded meshes and their convex de-
composition in an application to robot task and motion planning [6, 4, 5], this
paper gives a complete derivation of our bounded mesh algorithm and evaluates
its effectiveness. In the following, we first describe our work with respect to
related geometric algorithms and applications in Section 2. Then, we derive our
bounding mesh algorithm as a constrained approximation problem in Section 3.
Finally, we evaluate our approach in Section 4 with respect to the quality of the
approximation.

2 Related Work

The idea to generate simpler meshes that enclose a given mesh was probably
first described by Hoppe in a 1999 patent description [10]. Hoppe describes a
progressive hull structure suitable for progressive transmission and rendering,
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which is generated by a sequence of edge contractions. Unlike our definition
of edge contractions, which minimize a distance metric, Hoppe’s progressive
hulls minimize the added volume, which often leads to sharp spikes, possibly far
away from the original mesh. While Hoppe’s metric is well suited for graphics
algorithms, ours is optimized towards collision, inclusion, and distance queries.

Gu et al. [9, pp. 21–23] perform a one-sided approximation in both directions
to speed up an algorithm for silhouette clipping. Sander et al. [16] later extend
this work to approximate texture and normal mapping.

Platis and Theoharis [15, 14] borrow Sander’s one-sided mesh approximation
to increase the efficiency their algorithm for ray–mesh intersection points. Cholt
[1] later proposes a few technical improvements.

Ciesla [2] describes a purely geometric approach to one-sided mesh approxi-
mation, which does not minimize a specific cost.

According to an extensive literature survey, the above publications are the
only prior works in one-sided mesh approximation. Note that almost all mini-
mize the added volume [10, 9, 16, 15, 14, 1] or have no specific cost function [2].
Our approach [4, 5], however, minimizes a well-defined distance measure, result-
ing in bounding meshes at very low Hausdorff distances from the input mesh,
which is highly desirable for approximate intersection, inclusion, and distance
queries.

3 Approach

Our bounding mesh algorithm performs iterative edge contractions to simplify
a given mesh in a single direction to construct an outer or an inner bounding
mesh. Contrary to earlier works, we derive an error metric that approximates
the Hausdorff distance.

3.1 Bounding Mesh Generation

Similar to the two-sided mesh approximation algorithm by Garland and Heck-
bert [3], we perform iterative edge contraction steps that are guided by a quadric
error measure. Constraining the selection of the contraction point to lie above
all neighboring triangles, we can guarantee for the resulting mesh to enclose the
original mesh; it becomes a bounding mesh. When the constraints are negated,
an inner bounding mesh is generated. Note that the existing quadric error mea-
sure [3] underestimates distances in the case of acute angles. To guarantee the
Hausdorff distance as a lower bound, we add an additional term to the error
measure.

3.2 Edge Contraction Cost Function

The most important choice in our bounding mesh algorithm is the design of
the edge contraction cost function E : (e,v) 7→ R, where e is an edge of points
(v1,v2) that are contracted to single a vertex v, as depicted in Fig. 2. The goal
of a bounded edge contraction is to find a contraction point v∗ that is restricted
outside (or, inside) the mesh and has minimal cost E(e,v∗). Denoting P as the
neighboring planes of a vertex, we can formulate the search for the contraction
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Figure 2: Bounded edge contraction. (a) Edge with neighboring planes, (b)
quadric cost matrix Q, (c) example of a case m = 2 minimizer, (d) global con-
straint minimizer v∗ adds tetrahedron volumes on each plane that have positive
heights

point v∗ as a constrained minimization problem

min
v∗

E((v1,v2),v∗) s. t. ∀p ∈ P (v1) ∪ P (v2) : pTv∗ ≥ 0 . (1)

In order to generate an inner bounding mesh, the inequality in Eq. 1 is negated
to pTv∗ ≤ 0. The only previous bounding mesh approaches [16, 15, 10] suggest
to define E as the added volume, as shown in Fig. 2d. While this may be a
reasonable choice for some graphics applications, the added volume may become
infinitely small in common cases such as sharp angles or thin triangles, effec-
tively allowing v∗ to be arbitrarily far away; this would create bounding meshes
unacceptable for distance-measuring, collision-checking, or other applications.

Therefore, our goal is to define a cost function E that is rather close to the
real Hausdorff distance. Luebke [11] discusses several such cost functions, of
which we choose an adaptation of the quadric error measure proposed by [3].
Let d denote the Hausdorff distance of two geometric entities. Intuitively, the
Hausdorff distance between two meshes is defined as the maximum distance an
arbitrary point on one mesh can have with its closest point on another. The
error quadric approximates the real distance of a point v to the mesh by the
sum of squared distances to the neighboring planes P (e); this can conveniently
be written as a multiplication with a symmetric 4-by-4 matrix Q(e).

E(e,v) =
∑

p∈P (e)

(d(p,v))
2

= vT
∑

p∈P (e)

pTp v = vTQ(e) v (2)

Fig. 2b visualizes this type of quadric cost function for a placement of v. The
matrix Q above is the one proposed by [3] and is frequently used for its sim-
plicity [11]. One important benefit of Q is that after an edge collapse, the cost
functions of modified edges do not need to be re-calculated as a sum of pTp,
but can simply be approximated by the upper bound

Q(v∗) = Q(v1) + Q(v2). (3)

This summation step can therefore be calculated in constant time rather than
a time linear to the number of vertices.

However, there are two issues that should be resolved for this metric to
approximate the Hausdorff distance more closely:

1. Distances to planes can underestimate the distance to triangles. Because
of this, Eq. 2 may be infinitely smaller than the real distance to the mesh,
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for every edge e do
Compute Q(e) (Eq. 4);
Minimize E(e,v∗) (Eq. 1);
Add E(e,v∗) to priority queue;

end
while E(e,v∗) < ε2 do

Pop best edge e;
Modify geometry

Remove edge e and adjacent triangles;
Insert new vertex v∗ and triangles;

Modify priority queue
Re-calculate costs of changed edges;

end
Algorithm 1: Bounding Mesh Generation with iterative edge contraction

even when we assume v to be in the constrained subspace defined by Eq. 1.
Intuitively, this happens in the very common case of acute angles. In the
following section, we propose a new definition of Q to fix this issue.

2. While the approximated cost update in Eq. 3 is an upper bound, it may be
three times as high as the real cost and cause sub-optimal results [3]. We
fix this by appropriate subtractions using the inclusion-exclusion principle,
which can also be applied to earlier works [4, 3].

3.3 Quadric Hausdorff Distance Approximation

Let us consider the case of approximating the Hausdorff distance between a
point x and an edge with its two neighboring planes {e,p1,p2}. We can argue
that infinitesimally beveling or rounding an edge does not change its Hausdorff
metric. Therefore, a possible choice for an additive term to the edge cost Q(e)
can be the distance to a mean or “bevel” plane normal to the edge e. Mathe-
matically, we define a corrected cost matrix for an edge Q(e) with neighboring
planes p1 and p2 with the added normal plane:

Q(e) := pT
1 p1 + pT

2 p2 + α (p1 + p2)T(p1 + p2) . (4)

We want to ensure it is not smaller than the Hausdorff metric, i.e., xTQ(e)x ≥
d({e,p1,p2},x)2 holds for all points x. It can be shown that the minimal α
fulfilling this equation is α = 〈n1,n2〉, with n1 and n2 being the normals of the
planes p1 and p2.

3.4 Iterative Edge Contraction

Now that we have defined a feasible Hausdorff distance approximation that
can be updated when contracting edges, we devise an algorithm to minimize
edge contraction costs and to finally generate the bounding mesh. Our overall
bounding mesh generation procedure is outlined in Algorithm 1. As proposed by
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Garland and Heckbert [3], costs to collapse an edge can efficiently be stored in a
priority queue. When an edge is contracted, only cost functions of neighboring
edges need to be recalculated and moved in the queue.

In the initialization step, the algorithm starts computing costs for the col-
lapsing of all edges, and inserts them into the priority queue. Minimizing the
contraction cost of an edge e from Eq. 1 is a quadratic problem with linear
inequalities. However, as visualized in Fig. 2c, it is evident that the mini-
mizer v∗ may be constrained by zero, one, two, or at least three planes. We
can therefore exhaustively search for all candidate minimizers in all four cases
m ∈ [0..3] by enumerating all m-subsets of neighboring planes P (v1)∪P (v2) [4].
It is straightforward to construct the (3−m)-dimensional subspace of each con-
straint subset; Fig. 2c shows an m = 2 case with the intersection of the two
planes of neighboring triangles. We can then solve for each candidate minimizer
v′ by unconstrained quadratic minimization in the respective subspace. With
this approach, all four cases m ∈ [0..3] reduce to linear systems with up to three
dimensions. Of all candidate minimizers that fulfill all inequality constraints, we
compute the cost function and finally obtain the global minimizer v∗. Note that
since the number of neighboring planes is very limited, our exhaustive search is
sufficiently fast, with 105 edge decimations per second on an average desktop
computer [4].

3.5 Bounding Convex Decomposition

Up to this step, we have simplified a given mesh to a bounding mesh, as shown
in Fig. 1b and 4. Even though this bounding mesh is a precise approximation, it
is non-convex and rather inefficient to process for distance-measuring and many
motion planning algorithms. The crucial step is to decompose it into convex
polyhedra and obtain a bounded set of convexes, as shown in Fig. 1c. To
achieve this bounded convex decomposition, we adapt the approximate convex
segmentation by Mamou and Ghorbel [12]. Their algorithm searches on the
dual graph of triangles to contract edges and to segment convex clusters. The
segmentation is guided by a weighted cost function of a concavity and an aspect
ratio measure. The aspect ratio cost is designed to dominate the first few
iterations and to quickly simplify the dual graph; after that, the segmentation
is mostly lead by the concavity measure.

Note that the convex segmentation itself does not reduce the number of
vertices of the mesh. Mamou and Ghorbel therefore use (two-sided) mesh sim-
plification [3] in a preprocessing step of their implementation [12], and further
discard all but a constant number (i.e., 16) of vertices of each convex cluster.
Importantly, both of these steps do not preserve the volume of the original
mesh, and do not generate a bounding set of convex polyhedra [7]. We there-
fore replace both steps by our bounding mesh algorithm. Note that convex
decomposition alone would hardly reduce the complexity of meshes (as it leaves
convex areas unchanged), so only the combination of our work and [12] can
generate bounding sets of convex polyhedra. These bounding sets of convexes
precisely approximate the real geometry (see Fig. 1c) and, being convex, can
even guarantee worst case collision detection within real-time limits.
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Figure 3: Robot Base: Bounding mesh precision with respect to vertex count.
(a) Original mesh, (b) quadric cost function E with respect to vertex count, (c)
exact Hausdorff distance d to original mesh

V = 9296
(original)

V = 8434
ε < 0.0001 m

V = 5382
ε < 0.001 m

V = 3967
ε < 0.002 m

V = 3015
ε < 0.005 m

V = 2280
ε < 0.017 m

Figure 4: A series of bounding meshes tightly approximates a Robot geometry
by enclosing meshes, greatly reducing the number of vertices.

4 Evaluation

To evaluate the performance of our approach, we analyze the approximation
quality of our bounding mesh algorithm.

With our approach, a typical robot geometry mesh can easily be simplified
to a bounding mesh using only a fraction of the number of vertices V, as shown
in Fig. 4. In the example, the bounding meshes have acceptable Hausdorff
distances ε of a few millimeters at one third of the number of vertices; high-
definition CAD models may be simplified even further. As a result, collision
detection will safely recognize all collisions, and can possibly report false posi-
tives when distances are within [0, ε]. In contrast to standard, two-sided mesh
simplification [3, 12], it will never fail to detect a collision.

Fig. 3 gives a more detailed view on the approximation error, with respect
to the number of collapsed edges. As shown in Fig. 3b, the mesh of a typical
robot rigid body (the base part of the one shown in Fig. 4), with initially 1590
vertices, will easily reduce to a bounding mesh of 800–1000 vertices at very little
cost. At 300–400 vertices, there is a “sweet spot” with an acceptable Hausdorff
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V = 34834
(original)

V = 25446
ε < 0.0001 m

V = 13440
ε < 0.0002 m

V = 6092
ε < 0.0005 m

V = 2692
ε < 0.001 m

V = 1263
ε < 0.004 m

V = 709
ε < 0.005 m

V = 482
ε < 0.02 m

Figure 5: A series of bounding meshes of the common benchmark geometry
Stanford Bunny with decreasing numbers of vertices.

distance and good reduction; with even lower vertex counts, the approximation
error then steeply increases. In the same graph, the dashed line shows marginal
costs of single edge collapses; notably, some of them even reduce the approxi-
mation error, which is indicated by lower peaks (negative scale is not shown).
Fig. 3c shows the same bounding mesh simplification, but with exact Hausdorff
distances calculated. Because our cost function E is based on a sum of squared
distances, Hausdorff distances are at the order of

√
E. This graph indicates

that our cost function is a viable approximation of the Hausdorff distance to
generate ε-precise bounding meshes.

For comparison, we also included the well-known Stanford Bunny with its
bounding meshes in Fig. 5. Because this mesh was triangulated rather uniformly
at great detail, our bounding mesh generation performs particularly well at
reducing the numbers of vertices at very low Hausdorff distances ε.

5 Conclusion and Future Work

In this work, we propose an algorithm for approximating arbitrary meshes by
bounding meshes, which enclose the original mesh and have fewer vertices.
Bounding meshes may be applied to a wide range of geometric algorithms,
including fast and safe collision checking, and lower and upper approximate dis-
tance computation. In combination with convex decomposition, we can generate
bounding sets of convexes, a data structure that allows very efficient geomet-
ric algorithms, and even collision detection within guaranteed worst case time
limits.

Future work will include an open source release of the software discussed,
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made available on the author’s website1, and more research on inner bounding
meshes and their application to inclusion queries.
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and Alois Knoll. Robot Task and Motion Planning with Sets of Convex
Polyhedra. In Robotics: Science and Systems (RSS) Workshop on Com-
bined Robot Motion Planning and AI Planning for Practical Applications,
2013.

[8] Elmer G. Gilbert, Daniel W. Johnson, and S. Sathiya Keerthi. A fast
procedure for computing the distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and Automation, 4(2):193–
203, 1988.

[9] Xianfeng Gu, Steven J Gortler, Hugues Hoppe, Leonard McMillan, Bene-
dict Brown, and Abraham Stone. Silhouette mapping. Computer Science
Technical Report TR-1-99, Harvard University, 1999.

1http://www.boundingmesh.com/
2http://www.james-project.eu/
3http://www.smerobotics.org/

9

http://www.cescg.org/CESCG-2012/papers/Cholt-Progressive_Hulls_Application_on_Biomedical_Data.pdf
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1109/IROS.2013.6696354
http://dx.doi.org/10.1109/IROS.2013.6696354
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=2083
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=2083
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=2083
http://www.boundingmesh.com/
http://www.james-project.eu/
http://www.smerobotics.org/


[10] Hugues H Hoppe. Progressive hulls, July 1 2003. US Patent 6,587,104.

[11] David P Luebke. Level of Detail for 3D Graphics. Morgan Kaufmann Pub,
2003.

[12] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for
3D mesh approximate convex decomposition. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), pages 3501–3504,
2009.

[13] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose
library for collision and proximity queries. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 3859–
3866, 2012.

[14] Nikolaos V. Platis. Tεχνικές πoλλαπλών αναλν́σεων στην απλoπoίηση
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