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Abstract

We present a set of extensions to the knowledge-level
PKS (Planning with Knowledge and Sensing) planner,
aimed at improving its ability to generate plans in real-
world robotics domains. These extensions include a fa-
cility for integrating externally-defined reasoning pro-
cesses in PKS (e.g., invoking a motion planner), an
interval-based fluent representation for capturing the ef-
fects of noisy sensors and effectors, and an application
programming interface (API) to facilitate software in-
tegration on robot platforms. We demonstrate our tech-
niques in three simple robot domains, which show their
applicability to a broad range of robot planning applica-
tions involving incomplete knowledge, real-world ge-
ometry, and multiple robots and sensors.

Introduction and Motivation
A robot operating in a real-world domain often needs to do
so with incomplete information about the state of the world.
A robot with the ability to sense the world can also gather
information to generate plans with contingencies, allowing
it to reason about the outcome of sensed data at plan time.

In this paper, we explore an application of planning with
incomplete information and sensing actions to the problem
of task planning in robotics domains. In particular, building
models of realistic domains which can be used with general-
purpose planning systems often involves working with in-
complete (or uncertain) perceptual information arising from
real-world sensors. Furthermore, this task may be compli-
cated by the difficulties of bridging the gap between geo-
metric and symbolic representations: robot systems typically
reason about joint angles, spatial coordinates, and continu-
ous spaces, while many symbolic planners work with dis-
crete representations in represented in logic-like languages.

Our approach makes use of the PKS (Planning with
Knowledge and Sensing) planner (Petrick and Bacchus
2002; 2004) as the high-level reasoning tool for task plan-
ning in robotics domains. PKS is a general-purpose contin-
gent planner that operates at the knowledge level (Newell
1982), by reasoning about how its knowledge changes due
to action during plan generation. PKS is able to represent
known and unknown information, and model sensing actions
using concise but rich domain descriptions, making it well

Figure 1: In the FORCE SENSING scenario, a compliant
robot manipulator senses if beverage containers are filled
by lifting them and sensing their weight. Objects must be
held upright while moving to prevent spilling, unless they
are known to be completely empty or unopened.

suited for reasoning in structured, partially-known environ-
ments of the kind that arise in many robot scenarios.

While PKS has been used successfully in previous robot
domains (Petrick et al. 2009), it lacks certain features which
could improve its applicability to a wider range of robotics
tasks. In this paper, we describe a set of extensions de-
signed to improve PKS’s ability to generate plans in real-
world robot scenarios, by focusing on three tasks: combining
high-level symbolic planning with low-level motion plan-
ning, reasoning about noisy sensors and effectors, and facil-
itating planner-level software integration on robot platforms.

The planner has also been integrated into a larger soft-
ware framework called Knowledge of Volumes for robot task
Planning (KVP) (Gaschler et al. 2013a), aimed at facilitat-
ing the use of planning techniques on a variety of robot plat-
forms (see Figures 1 and 5), which has been developed as
part of the JAMES project.1 This framework serves as the
basis for the robot demonstrators we describe below.

The rest of this paper is organised as follows. We first

1See http://james-project.eu/ for more information.



present an overview of PKS and then describe three exten-
sions to the basic planning system which enhance its ability
to operate in robotics domains. We then give three exam-
ples of robot domains where we use the extended version
of the planner to generate solutions; the first two domains
are tested on real robots, while the third domain is tested in
simulation. Finally, we situate our approach with respect to
related research and discuss future directions of our work.

Planning with Knowledge and Sensing (PKS)
PKS (Planning with Knowledge and Sensing) is a contin-
gent planner that builds plans in the presence of incomplete
information and sensing actions (Petrick and Bacchus 2002;
2004). PKS works at the knowledge level by reasoning about
how the planner’s knowledge state, rather than the world
state, changes due to action. PKS works with a restricted
subset of a first-order logical language, and limited infer-
ence. Thus, unlike planners that reason directly with possi-
ble worlds models or belief states, PKS works with a set of
formulae representing the planner’s knowledge state. This
enables it to support a rich representation with features such
as functions and variables; however, as a trade-off, its re-
stricted representation means that the planner cannot model
certain types of knowledge.

PKS is based on a generalisation of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the state of the world is mod-
elled by a single database. Actions update this database and,
by doing so, update the planner’s world model. In PKS, the
planner’s knowledge state, rather than the world state, is
represented by a set of five databases, each of which mod-
els a particular type of knowledge. The contents of these
databases have a fixed, formal interpretation in a modal logic
of knowledge. Actions can modify any of the databases,
which has the effect of updating the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type
of knowledge (especially disjunctions) that it can represent.
The contents of the databases are as follows:

Kf : This database is like a STRIPS database except that
both positive and negative facts are permitted and the closed
world assumption is not applied. Kf is used for modelling
action effects that change the world. Kf can include any
ground literal `, where ` ∈ Kf means “the planner knows `.”
Kf can also contain known function (in)equality mappings.

Kw: This database models the plan-time effects of sens-
ing actions with binary outcomes. φ ∈ Kw means that at
plan time the planner either “knows φ or knows ¬φ,” and
that at execution time this disjunction will be resolved. In
such cases we will also say that the planner “knows whether
φ.” Know-whether information is important since PKS uses
such knowledge to construct conditional plans (see below).

Kv: This database stores information about function values
that will become known at execution time. In particular, Kv

can model the plan-time effects of sensing actions that re-
turn constants, such as numeric values. Kv can contain any
unnested function term f , where f ∈ Kv means that at plan
time the planner “knows the value of f .” At execution time,
the planner will have definite information about f ’s value.

As a result, PKS is able to use Kv terms as run-time vari-
ables (Etzioni et al. 1992) in its plans.

Kx: This database models the planner’s exclusive-or knowl-
edge. Entries in Kx have the form (`1|`2| . . . |`n), where
each `i is a ground literal. Such formulae represent a partic-
ular type of disjunctive knowledge that arises in many plan-
ning scenarios, namely that “exactly one of the `i is true.”

LCW: This database stores the planner’s local closed world
information (Etzioni, Golden, and Weld 1994), i.e., in-
stances where the planner has complete information about
the state of the world. We will not use LCW in this paper.

PKS’s databases can be inspected through a set of prim-
itive queries that ask simple questions about the planner’s
knowledge state. Simple knowledge assertions can be tested
with a query K(φ) which asks: “is a formula φ true?” A
queryKw(φ) asks whether φ is known to be true or known to
be false (i.e., does the planner “know whether φ”). A query
Kv(t) asks “is the value of function t known?” The negation
of the above queries can also be used. An inference proce-
dure is used to evaluate primitive queries by checking the
contents of the databases, taking into consideration the in-
teraction between different types of knowledge.

An action in PKS is modelled by a set of preconditions
that query the agent’s knowledge state, and a set of ef-
fects that update the state. Action preconditions are sim-
ply a list of primitive queries. Action effects are described
by a collection of STRIPS-style “add” and “delete” opera-
tions that modify the contents of individual databases. E.g.,
add(Kf , φ) adds φ to Kf , and del(Kw, φ) removes φ from
Kw. Actions can also have ADL-style context-dependent ef-
fects (Pednault 1989), where the secondary preconditions of
an effect are described by lists of primitive queries. A sim-
ple form of quantification, ∀Kx and ∃Kx, that ranges over
known instantiations of x can also be used. Examples of
PKS actions are shown below in Figure 3.

PKS constructs plans by reasoning about actions in a sim-
ple forward-chaining manner: if the preconditions of an ac-
tion are satisfied by the planner’s knowledge state, then the
action’s effects are applied to produce a new knowledge
state. Planning then continues from the resulting state. PKS
can also build contingent plans with branches, by consid-
ering the possible outcomes of its Kw and Kv knowledge.
For instance, if φ ∈ Kw then PKS can construct two condi-
tional branches in a plan: along one branch (the K+ branch)
φ is assumed to be known (i.e., φ is added to Kf ), while
along the other branch (the K− branch), ¬φ is assumed to
be known (i.e., ¬φ is added to Kf ). A similar type of multi-
way branching plan can also be built by considering a re-
stricted type of Kv information. Planning continues along
each branch until the goal—a list of primitive queries–is sat-
isfied. A sample plan with branches is shown in Figure 4,
and described in greater detail below.

Extensions to PKS for Robot Task Planning
In this section we consider three recent extensions to the ba-
sic PKS system which we believe are particularly useful for
robot task planning. First, we describe a mechanism which



allows externally-defined procedures (e.g., from support li-
braries) to be integrated with the internal reasoning mech-
anisms of the planner. Second, we present an extension of
the PKS representation which allows a form of noisy nu-
merical information to be modelled, for instance to repre-
sent the effects of error prone sensors. Finally, we describe
a software-level application programming interface to PKS,
which aids in the engineering task of integrating the planner
with a robot system.

Executing Externally-Defined Procedures
The first extension we describe aims to take advantage of
existing reasoning tools by providing a mechanism for PKS
to invoke externally-defined procedures (e.g., defined in spe-
cial purpose libraries) from within the planner’s internal rea-
soning mechanism during plan generation. While this idea is
not new, and has been successfully applied in other contexts
(see the discussion section, below), the introduction of this
technique into PKS is a recent extension to the planner.

In particular, PKS provides an external query mechanism
of the form:

extern(proc(~x)),
where extern is a special keyword indicating that con-
trol should be transferred to an external procedure with the
name proc. ~x is a set of parameters that should be passed
to proc. In general, x can contain any symbols defined in
PKS’s knowledge state, providing a link between the plan-
ner and the externally-defined procedure. An extern call
can be used within an action definition, either as a precondi-
tion or an effect. The return value of the extern call, defined
within the external procedure, is passed back to PKS, which
interprets it in the context where it occurs in the action. Ad-
ditional tests may be performed on this value, which can be
assigned to domain properties and included in the planner’s
knowledge state. While no restrictions are placed on when
such procedures can be used in a planning domain, in prac-
tice extern calls are most useful if used for complex or spe-
cial purpose reasoning that cannot easily be modelled in the
planner’s restricted representation language, or where more
efficient reasoning engines already exist.

The externmechanism provides a powerful tool for PKS
to use in robotics domains by augmenting PKS’s core rea-
soning capabilities with the addition of motion planning,
collision detection, and other special purpose robotics li-
braries. For instance, geometric predicates and continuous
motions can be evaluated with extern calls, and reasoned
about at the symbolic level, enabling us to solve problem in-
stances which may be difficult to model directly at either the
motion planning or symbolic planning level alone. Examples
of this process are given below.

One important drawback with this facility in its present
form, is that there is no control over how long an external
procedure may take to execute, or whether it will terminate
at all. As a result, we are currently extending our extern
implementation to introduce a simple timeout facility that
will force external procedure calls to terminate if a speci-
fied cutoff time is reached. Currently, however, the domain
designer must ensure that any externally-defined procedures
operate correctly in the context of a given planning domain.

Reasoning with Interval-Valued Fluents
One type of sensed information that arises in many real-
world robotics contexts is numerical information, which is
often necessary for modelling state properties (e.g., the robot
is 10 metres from the wall), limited resources (e.g., ensure
the robot has enough fuel), constraints (e.g., only grasp an
object if its radius is less than 10 cm), or arithmetic opera-
tions (e.g., advancing the robot one step reduces its distance
to the wall by 1 metre). Reasoning with incomplete numer-
ical information is often problematic, however, especially
when planners represent incompletely known state proper-
ties by sets of states, each of which denotes a possible con-
figuration of the actual world state. E.g., if a fluent f could
map to any natural number between 1 and 100, then we re-
quire 100 states to capture f ’s possible mappings. The state
explosion resulting from large sets of mappings can be com-
putationally difficult for planners that must reason directly
with individual states to construct plans.

In PKS, we build on a previous planning approach (Pet-
rick 2011) which uses interval-valued fluents (IVFs) (Funge
1998) to avoid some of the computational problems involved
with uncertain numerical information. The idea is simple:
instead of representing each possible mapping by a separate
state, a single interval mapping is used, where the endpoints
of the interval indicate the fluent’s range of possible values.
Thus, a fluent f that could map to values between 1 and 100
can be denoted in an interval-valued form by f = 〈1, 100〉.

In general, PKS treats each IVF as a function whose deno-
tation is an interval of the form 〈u, v〉. The endpoints of the
interval, u and v, indicate the bounds on the range of possi-
ble mappings for the fluent. Since we are interested in plan-
ning with incomplete information, a mapping f = 〈u, v〉
will mean that the value of f is known to be in the interval
〈u, v〉. If a fluent maps to a point interval of the form 〈u, u〉,
then the mapping is certain and known to be equal to u.

PKS’s knowledge of (general) IVFs are stored in its Kx

database, as a generalisation of its exclusive-or information.
In addition to basic intervals, disjunctive intervals (i.e., sets
of disjoint interval mappings) are also permitted. For in-
stance, if a fluent f could possibly map to any value be-
tween 5 and 10 or, alternatively, map to values between 15
and 18, we can represent such information by the Kx for-
mula (f = 〈5, 10〉 |f = 〈15, 18〉).

Certain types of IVFs can also be represented in the
Kv and Kw databases. For instance, a fluent of the form
f : 〈x− c, x+ c〉 in Kv means that the value of the fluent
f is known, and f is in the range x ± c, for some numeric
constant c and unknown fluent value x. This mechanism can
be used to model the results of noisy sensors. In Kw, we
also permit numeric relations of the form f op c, where
op ∈ {=, 6=, >,<,≥,≤} and c is a numeric constant. Thus,
f > 5 ∈ Kw can be used to model a sensing action that
determines whether f is greater than 5 or not. Since Kw is
used to build contingent branches into a plan, this extension
also enables PKS to build branches based on IVFs.

An Application Programming Interface
The task of integrating a planner onto a robot platform of-
ten centres around the problem of representation, and how



to abstract the capabilities of a robot and its working en-
vironment so that it can be put in a suitable form for use
by the planner. Integration also typically requires the ability
to communicate information between system components.
Thus, the integration of a planning system usually requires
a consideration of certain engineering-level concerns, to en-
sure proper interoperability with components that aren’t tra-
ditionally considered in theoretical planning settings.

In order to facilitate the task of providing software-level
planning services to robot systems, we have created an
application programming interface (API) for a version of
PKS implemented as a C++ library. This interface abstracts
many common planning operations into a series of func-
tions which provide direct access to these services. For in-
stance, this interface includes methods for manipulating do-
main representations, as well as functions for controlling
certain aspects of the the plan generation process itself (e.g.,
selecting goals, generation strategies, or planner-specific set-
tings). Moreover, functions that allow plans to be manipu-
lated as first-class entities (e.g., for replanning) are provided.
A fragment of the API is given in Figure 2.

Overall, the API is designed to be generic and is not meant
to be tied to one particular planning system. For instance, the
planner configuration methods are meant to provide a way to
set certain properties of the underlying planning system, and
provide access to features needed for debugging. The do-
main configuration functions provide the main methods for
defining planning domain models, either from traditional do-
main/problem files, or via string-based descriptions. One im-
portant idea behind the configuration functions is that they
offer the possibility of specifying domains to the planner in-
crementally, using function calls alone, rather than specify-
ing a single monolithic domain file. This means that an ini-
tial domain could be specified and then later revised, for in-
stance due to additional information discovered by the robot
during execution (e.g., new domain objects, revised action
descriptions, additional properties corresponding to new ca-
pabilities of the robot, etc.). Finally, the plan generation and
iteration functions specify methods for controlling various
aspects of the plan generation process, and provide a way
for processes external to the planner to control simple moni-
toring and replanning activities, including updates to certain
aspects of the planning problem, such as goal change.

We will discuss the integration of PKS on our robot plat-
forms in greater detail in the discussion section below.

Example Domains
To demonstrate our approach, we now describe three
robotics scenarios that make use of knowledge-level plan-
ning: the FORCE SENSING and the BIMANUAL robot sce-
narios, based on domains first described in (Gaschler et al.
2013c) and tested on real robots, and the ROBOT LOCALI-
SATION scenario, tested in simulation. In all scenarios, the
robot uses sensing actions to obtain knowledge of some do-
main property which is necessary for achieving the goal.
In the first scenario, only the basic PKS system is used. In
the second scenario, PKS’s external procedure mechanism
is used to link a motion planning library to the planner’s in-
ternal reasoning mechanisms. In the final scenario, we make

// Configuration and debugging
void reset();
string getPlannerProperty(string);
bool setPlannerProperty(string, string);

// Domain configuration
bool defineDomain(string);
bool defineSymbols(string);
bool defineActions(string);
bool defineProblems(string);
bool definePlanState(string);
bool defineObservedState(string);

// Plan generation and iteration
bool buildPlan();
string getCurrentPlan();
Action getNextAction();
bool isNextActionEndOfPlan();
bool isPlanDefined();
bool setProblem(string);
bool setProblemGoal(string);

Figure 2: A fragment of the PKS API.

use of interval-valued fluents in a simple localisation task.
In each case, we discuss the symbolic domain definitions of
the scenario, and provide an example of the solution plan
that was generated in that domain.

Force Sensing Scenario
In the FORCE SENSING scenario, a robot manipulator is
tasked with transferring beverage containers from one table
to another, as shown in Figure 1. Through its torque sensors,
it can sense the external force of a grasped container, and
decide whether or not that drink could be spilled. The robot
should hold drinks exactly upright to prevent spilling, un-
less a drink is known to be completely empty, in which case
a faster arbitrary motion may be performed. In order to keep
this scenario simple, the location of all objects are known
and no sensing except force sensing is available.

Figure 3 shows the PKS actions in the FORCE SENSING
scenario, which includes a sensing action, senseWeight,
which senses the weight of a beverage container ?o. To per-
form this action, the robot must first be grasping object ?o.
To ensure only new knowledge is gained from this action,
and to increase planning efficiency, we include a precondi-
tion that the robot must not yet know whether ?o is spillable.
When this action is performed, knowledge of whether ?o is
spillable or not is added to PKS’s Kw database.

This scenario also includes a number of actions for ma-
nipulating domain objects, including transferUpright,
transfer, grasp, and ungrasp actions, also listed in Fig-
ure 3. For example, in the transferUpright action, the
robot can move a grasped container from one table to the
other, while keeping the orientation of its parallel gripper
fixed. Only objects that are grasped and not yet removed to
the second table can be transferred.

An example plan for the FORCE SENSING scenario is
shown in Figure 4 for the case of two objects in the do-
main. In particular, a sensing action is performed on each



action senseWeight(?o:object)
preconds:

¬Kw(isSpillable(?o)) &
K(isGrasped(?o))

effects:
add(Kw, isSpillable(?o))

action transfer(?o:object)
preconds:

K(¬isSpillable(?o)) &
K(isGrasped(?o)) &
K(¬isRemoved(?o))

effects:
add(Kf, isRemoved(?o))

action transferUpright(?o:object)
preconds:

K(isSpillable(?o)) &
K(isGrasped(?o)) &
K(¬isRemoved(?o))

effects:
add(Kf, isRemoved(?o))

action grasp(?o:object)
preconds:

K(emptyGripper) &
K(¬isRemoved(?o))

effects:
add(Kf, isGrasped(?o)),
add(Kf, ¬emptyGripper)

action ungrasp(?o:object)
preconds:

K(isGrasped(?o)) &
K(isRemoved(?o))

effects:
add(Kf, ¬isGrasped(?o)),
add(Kf, emptyGripper)

Figure 3: Actions in the FORCE SENSING domain.

object (can1 and can2) and the objects are individually ma-
nipulated depending on whether their contents are spillable
or not. The resulting plan therefore considers four contin-
gent situations which could arise during plan execution. This
scenario was tested on a joint-impedance controlled light-
weight 7-DoF robot with a force-controlled parallel gripper.
Forces were measured by internal torque sensing.

Bimanual Robot Scenario
The second scenario is a demonstration of a BIMANUAL
robot (Figure 5) whose hands can reach different areas of
a table. In this case, the robot can sense if bottles on the ta-
ble are empty or full using a top-down camera. Its goal is
to clean up all empty bottles by removing them to a cer-
tain “dishwasher” location. In order to achieve this goal,
the robot must move objects that are only accessible by its
left arm to a location that its right arm can reach, a be-
haviour which arises purely from symbolic planning. In con-
trast to the previous FORCE SENSING scenario, the BIMAN-
UAL robot scenario relies on visual information, which can
be gathered without requiring manipulation.

1. grasp(can1) ;
2. senseWeight(can1) ;
3. branch(isSpillable(can1))
4. K+:
5. transferUpright(can1) ;
6. ungrasp(can1) ;
7. grasp(can2) ;
8. senseWeight(can2) ;
9. branch(isSpillable(can2))
10. K+:
11. transferUpright(can2) ;
12. ungrasp(can2).
13. K-:
14. transfer(can2) ;
15. ungrasp(can2).
16. K-:
17. transfer(can1) ;
18. ungrasp(can1) ;
19. grasp(can2) ;
20. senseWeight(can2) ;
21. branch(isSpillable(can2))
22. K+:
23. transferUpright(can2) ;
24. ungrasp(can2).
25. K-:
26. transfer(can2) ;
27. ungrasp(can2).

Figure 4: A plan for removing 2 objects from a table in the
FORCE SENSING domain.

The PKS actions in the BIMANUAL scenario are given
in Figure 6. Two robot arms are tasked with removing all
empty bottles that are visible on a table, and moving them to
the dishwasher location, which can only be reached by the
right robot arm. The domain includes one sensing action,
senseIfEmpty, which has no precondition other than the
requirement that the knowledge it gathers must be new. For
manipulation, both robot arms can perform the pickUp and
putDown actions. However, not all locations can be reached
by both hands, so the preconditions of these actions include
an extern call to isReachable, which is defined in a motion
planning library and which checks reachability for a specific
manipulator and location. This interaction of symbolic and
motion planners is described in greater detail in the discus-
sion section below, and in (Gaschler et al. 2013a).

An example plan is shown in Figure 7 for the case of
4 objects. In particular, the plan senses each object to de-
tect whether or not it is empty and then constructs a condi-
tional plan to subsequently remove the empty objects to the
dishwasher. The resulting plan therefore considers 16 possi-
ble configurations of empty/non-empty bottles which could
arise at execution. (The actions for the case where bottle0
and bottle2 are empty are shown.) It is interesting to ob-
serve that this simple robot scenario already gives rise to in-
teresting behaviour: since the right arm cannot directly reach
all objects that need to be transferred to the goal location, the
left arm must pass those objects to a location reachable by
both hands. This behaviour has not been pre-programmed,
but instead arises purely from the combination of symbolic
and geometric planning.



Figure 5: In the BIMANUAL scenario, a camera is used to
recognise empty bottles which a bimanual robot should re-
move from the table to a “dishwasher” location on the left
side, behind the table (Gaschler et al. 2013a; Giuliani et
al. 2013). A video of the robot operating in this scenario
is available at http://youtu.be/yMmZkhHr8ss.

This domain was tested on a two 6-DoF industrial manip-
ulator setup with Meka Robotics H2 humanoid hands, with
an RGB camera facing top-down for simple colour-filtering
object recognition, as described in (Foster et al. 2012).

Robot Localisation Scenario
In the final example, we consider a robot whose loca-
tion, represented by the IVF robotLoc, is measured by the
robot’s distance to a wall. The robot has two physical ac-
tions available to it: moveForward, which moves the robot
either 1 or 2 units towards the wall; and moveBackward,
which moves the robot 1 unit away from the wall. The robot
also has a sensing action, atTarget, which senses whether
the robot is at a target location, specified by the function
targetLoc. Additionally, the robot also has a second sens-
ing action, withinTarget, that determines whether or not
the robot is within the target distance targetLoc.

The definitions of the PKS actions for this scenario are
given in Figure 8 (all action preconditions are assumed to be
true). The robot’s initial location is specified by the interval
mapping robotLoc = 〈3, 4〉 stored in Kx. The goal is to
move the robot to the target location, i.e., K(robotLoc =
targetLoc), where targetLoc = 2 is stored in Kf .

One solution generated by PKS is the conditional plan
in Figure 9. Since forward movements may change the
robot’s position by either 1 unit or 2 units, noisyForward
in step 1 results in an even less certain position for the robot,
namely robotLoc = 〈1, 3〉 ∈ Kx. However, the sensing
action in step 2, together with the branch point in step 3,
lets us split this interval into two parts. In step 4, we as-
sume that robotLoc ≤ 2 and consider the case where
robotLoc = 〈1, 2〉. atTarget, together with the branch
in step 6, lets us divide this interval even further: in step 7,
robotLoc = 2 and the goal is satisfied, while in step 8,
robotLoc = 1 and a moveBackward action achieves the
goal. In step 10 we consider the other sub-interval of the

action senseIfEmpty(?o:object)
preconds:

¬Kw(isEmptyBottle(?o))
effects:

add(Kw, isEmptyBottle(?o))

action pickUp(?r:robot, ?o:object, ?l:location)
preconds:

K(?l = getObjectLocation(?o)) &
K(handEmpty(?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, ?l = getObjectLocation(?o)),
del(Kf, handEmpty(?r)),
add(Kf, inHand(?o, ?r))

action putDown(?r:robot, ?o:object, ?l:location)
preconds:

K(inHand(?o, ?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, inHand(?o, ?r)),
add(Kf, ?l = getObjectLocation(?o)),
add(Kf, handEmpty(?r))

Figure 6: Actions in the BIMANUAL domain.

first branch, i.e., robotLoc = 3 ∈ Kf . In this case we have
definite knowledge, however, a subsequent noisyForward
results in robotLoc = 〈1, 2〉. The remainder of the plan in
steps 12–16 is the same as in steps 5–9: the robot condition-
ally moves backwards in the case that robotLoc is deter-
mined to be 1, while the plan trivially achieves the goal if
robotLoc = 2.

We have not tested this domain on a real robot yet but
have instead performed a series of tests in simulation using
a variety of initial and target locations. Experimentation with
IVF domains on a real robot is a focus of current work.

Related Work and Discussion
Applications of automated planning to robotics go back to
the early 1980s, for instance with the famous robot sys-
tems Shakey (Nilsson 1984) and Handey (Lozano-Pérez
et al. 1989). Since that time, the field has made substan-
tial progress, and various approaches to robot task plan-
ning have been proposed, including probabilistic techniques
from artificial intelligence (Kaelbling and Lozano-Pérez
2013), closed-world symbolic planning (Cambon, Alami,
and Gravot 2009; Plaku and Hager 2010; Dornhege et al.
2009b), formal synthesis (Kress-Gazit and Pappas 2008;
Cheng et al. 2012), and sampling-based manipulation plan-
ning (Zacharias, Borst, and Hirzinger 2006; Barry 2013).

As part of our work to apply general-purpose planning
in robotics domains, we developed the Knowledge of Vol-
umes framework for robot task Planning (KVP), initially
presented in (Gaschler et al. 2013a). KVP uses PKS as its
underlying symbolic planner, and combines it with the idea
of treating 3D geometric volumes as an intermediary rep-
resentation between continuously-valued robot motions and
discrete symbolic actions, to address the problem of bridg-



1. senseIfEmpty(bottle0) ;
2. senseIfEmpty(bottle1) ;
3. senseIfEmpty(bottle2) ;
4. senseIfEmpty(bottle3) ;
5. branch(isEmptyBottle(bottle0))
6. K+:
7. branch(isEmptyBottle(bottle1))
8. K+: . . .
9. K-:
10. branch(isEmptyBottle(bottle2))
11. K+:
12. branch(isEmptyBottle(bottle3))
13. K+: . . .
14. K-:
15. pickUp(left,bottle0,l0) ;
16. putDown(left,bottle0,l5) ;
17. pickUp(right,bottle2,l2) ;
18. putDown(right,bottle2,dishwasher) ;
19. pickUp(right,bottle0,l5) ;
20. putDown(right,bottle0,dishwasher).
21. K-: . . .
22. K-: . . .

Figure 7: A plan for 4 objects in the BIMANUAL domain.

action moveForward
effects:

add(Kf, robotLoc := robotLoc - <1,2>)

action moveBackward
effects:

add(Kf, robotLoc := robotLoc + 1)

action atTarget
effects:

add(Kw, robotLoc = targetLoc)

action withinTarget
effects:

add(Kw, robotLoc <= targetLoc)

Figure 8: Actions in the LOCALISATION domain.

ing the gap between geometric and symbolic planning repre-
sentations. By using the intermediate representation of vol-
umes, KVP can model continuous geometry, in contrast to
arbitrary discretisation (Gaschler et al. 2013a).

Previous work described the KVP framework (Gaschler
et al. 2013a), and gave details of the swept volume compu-
tation for convex sets of polyhedra (Gaschler et al. 2013b).
The two task planning scenarios discussed in this paper were
previously presented in (Gaschler et al. 2013c), however, the
present paper focuses on the planning aspects of this work,
giving a detailed discussion of knowledge-level planning,
sensing actions, and discrete uncertainty.

A number of approaches also address the problem of
integrating symbolic planning and motion planning. For
instance, our work is in part inspired by Kaelbling and
Lozano-Pérez’s earlier work on hierarchical task and motion
planning (Kaelbling and Lozano-Pérez 2011), borrowing the
continuous geometry of swept volumes. However, while the

robotLoc
0. 〈3, 4〉
1. noisyForward ; 〈1, 3〉
2. withinTarget ;
3. branch(robotLoc ≤ targetLoc)
4. K+: 〈1, 2〉
5. atTarget ;
6. branch(robotLoc = targetLoc)
7. K+: nop. 2
8. K-: 1
9. moveBackward. 2
10. K-: 3
11. noisyForward ; 〈1, 2〉
12. atTarget ;
13. branch(robotLoc = targetLoc)
14. K+: nop. 2
15. K-: 1
16. moveBackward. 2

Figure 9: A plan in the LOCALISATION domain.

geometric preconditions may be similar, their underlying
aggressively hierarchical planning strategy differs from the
knowledge-level planning approach we use here. Further
approaches that integrate symbolic and geometric reason-
ing are presented by Cambon, Alami and Gravot (2009),
handling geometric preconditions and effects; Dornhege et
al. (2009b); and, more recently, Plaku and Hager (2010),
which additionally allow differential motion constraints in
a sampling-based motion and action planner. We note that
the latter three approaches assume a closed world, where all
symbols must be either true or false. Our approach instead
represents open-world knowledge, which allows us to model
incomplete information and high-level sensing. Prior work
has also used PKS to connect robot vision and grasping with
automated planning (Petrick et al. 2009).

In terms of our extensions to PKS, the ability to link ex-
ternal libraries to internal reasoning processes is key to our
approach. While this idea is not new, and has been pre-
viously applied (Eiter et al. 2006; Dornhege et al. 2009a;
Erdem et al. 2011), the introduction of such techniques to
PKS is a recent addition to the planner. Current work is fo-
cused on extending this interface, to allow external proce-
dures partial access to internal PKS planning states, for more
efficient external execution during plan generation.

Interval-valued numeric models have been previously in-
vestigated in planning contexts, e.g., for modelling time
as a resource (Edelkamp 2002; Frank and Jónsson 2003;
Laborie 2003). A similar representation to ours for bounding
noisy numeric properties has also been proposed by Pog-
gioni, Milani, and Baioletti (2003). This idea also has par-
allels to work on register models (van Eijck 2013). The im-
portance of numerical reasoning in planning has been recog-
nised with the inclusion of numeric state variables in PDDL,
and in planners like MetricFF. We believe representations
such as our IVF approach offer a useful middle ground be-
tween discrete and fully probabilistic models of uncertainty.

Motion planning and collision detection in our work rely
heavily on the Robotics Library (RL)2 (Rickert 2011), ex-

2Available from http://www.roboticslibrary.org/.
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Figure 10: Overview of the implemented KVP framework
(Gaschler et al. 2013a).

tended with several crucial additions to swept volume com-
putations with sets of convex bodies (Gaschler et al. 2013a).
To efficiently generate these sets of convex bodies, Mamou
and Ghorbel’s approximate convex decomposition algorithm
(Mamou and Ghorbel 2009) is applied. An overview of
KVP’s component architecture is shown in Figure 10; the
integration of PKS within this framework is achieved using
the API described in this paper.

Finally, we note that the set of functions we defined for
our planning API can be thought of as an interface to a series
of abstract planning services which are ultimately imple-
mented by some underlying “black box” planning system.
As with other types of complex software modules, such an
interface removes the need for the application programmer
to know about how such services are actually implemented
within the black box, but instead allows the designer to build
more complex components that simply make use of these
services. We are currently exploring the option of adapting
other existing planners to use our interface, in order to ex-
periment with alternative planner backends.

Conclusions
We described a set of extensions to PKS, aimed at improv-
ing its applicability to problems in robot task planning. We
demonstrated the capabilities of our approach in solving typ-
ical robot tasks at the knowledge level, including the com-
bination of high-level symbolic planning with low-level mo-
tion planning. Our evaluation included two simple scenar-
ios that covered force sensing and visual sensing, with real
execution on physical robot setups. A final example demon-
strated a simple robot localisation task in simulation. As part
of our ongoing and future work, we are continuing to re-
fine our extensions and apply them in more complex sce-
narios, in order to gather empirical data and better under-
stand the limits of our techniques. Overall, we believe our
approach is useful for a broad range of robot planning appli-
cations that require incomplete knowledge, real-world ge-
ometry, and multiple robots and sensors.

Acknowledgements
This research was supported in part by the European
Commission’s Seventh Framework Programme under grant
no. 270435 (JAMES, james-project.eu) and grant
no. 270273 (XPERIENCE, xperience.org)

References
Barry, J. L. 2013. Manipulation with Diverse Actions. Ph.D. Dis-
sertation, Massachusetts Institute of Technology.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid approach
to intricate motion, manipulation and task planning. International
Journal of Robotics Research 28(1):104–126.
Cheng, C.; Geisinger, M.; Ruess, H.; Buckl, C.; and Knoll, A.
2012. Game solving for industrial automation and control. In IEEE
Int. Conf. on Robotics and Automation, 4367–4372.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.; and
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