
Intuitive Robot Tasks with Augmented Reality and Virtual Obstacles

Andre Gaschler, Maximilian Springer, Markus Rickert and Alois Knoll

Abstract— Today’s industrial robots require expert knowl-
edge and are not profitable for small and medium sized
enterprises with their small lot sizes. It is our strong belief
that more intuitive robot programming in an augmented reality
robot work cell can dramatically simplify re-programming
and leverage robotics technology in short production cycles.
In this paper, we present a novel augmented reality system
for defining virtual obstacles, specifying tool positions, and
specifying robot tasks. We evaluate the system in a user study
and, more specifically, investigate the input of robot end-effector
orientations in general.

I. INTRODUCTION

Even though hardware costs dropped significantly over the
past decades, industrial robots are still not profitable enough
for small and medium sized enterprises (SMEs). Shraft et
al. [1] identify three major objectives in order to leverage
robotics technology in small scale production: reducing
training times to a single day, simplifying changes and re-
programming, and dramatically reducing programming time
as a whole.

In contrast to large companies, SMEs typically face small
lot sizes, short production cycles, unstructured environments,
and do not employ experts with robotics knowledge. Pro-
gramming a robot system with conventional interfaces is
extremely time-consuming, difficult, and error-prone. With
the advent of augmented reality (AR) and new interaction
interfaces, we are able to visualize task plans and robot
motions in the workspace of the human worker. With this,
we improve users’ spatial perception and understanding of
the robot’s capabilities, and, most importantly, allow users to
give instructions to the robot in a more natural and intuitive
way.

In this work, we present and evaluate an intuitive robot
system in an augmented reality work cell. The user is given
a hand-held pointing device for specifying waypoints for the
robot end-effector and for triggering corresponding actions.
The system can handle generic types of robots, and is demon-
strated with both typical six degrees-of-freedom (DOF) in-
dustrial manipulators and a human-like robot with a ten DOF.
A top-mounted projector displays an augmented reality user
interface on the work table.

Coordinate systems of the work table and the robot can
quickly be calibrated at initial setup. Additional obstacles in
the work cell can be specified during interaction—inverse

A. Gaschler, M. Springer and M. Rickert are with the fortiss GmbH
affiliated to Technische Universität München, Munich, Germany. Correspon-
dence should be addressed to gaschler@ieee.org

A. Knoll is with the Department of Informatics, Technische Universität
München, Munich, Germany.

Robot

Goal 
position

Obstacle

Monitor

Start 
position

3D input 
device

Overlay 
projection

Fig. 1. Intuitive robot system with augmented reality worktop overlay,
3D visualization, and a hand-held input device. A video is available in the
file attachment of this paper and on the webpage http://youtu.be/
G-ZTeb-Si-s.

kinematics, collision detection, and path planning are used
in order to generate a fast and collision-free robot trajectory.

In a user study, we empirically investigate how robot pos-
tures can be defined using a hand-held 3D pointing device.
Two different input modalities have been implemented and
evaluated; the results of our study apply to the problem
of specifying orientations with a hand-held input device in
general.

II. RELATED WORK

Today’s relevant industrial programming techniques can
roughly be classified into online and offline techniques [1].
Online programming takes place at the site of production
itself and requires access to the robot and equipment. Popular
online techniques are lead-through and walk-through pro-
gramming. In lead-through programming, the robot’s control
is set to a “teach” mode and a proprietary teach pendant (e.g.
a joystick or a teachpad) is used to lead the robot through
the desired sequence of events. Lead-through programming
is generally time-consuming and unintuitive [2]. It is easy
to imagine that adjusting a six degrees of freedom (DOF)
robot arm with a two DOF joystick is not straightforward.
Especially trajectory oriented tasks can be very time con-
suming to program with today’s complex teach pendants
[2]. In walk-through programming, the human operator is in
direct physical contact with the robot and moves the joints to
the desired positions. Although this method allows intuitive
robot programming, only few lightweight robots offer the
necessary zero-torque control, and even then, safety concerns

http://youtu.be/G-ZTeb-Si-s
http://youtu.be/G-ZTeb-Si-s


may forbid operators to work in direct physical contact with
the robot.

Offline programming is the process of generating pro-
grams through simulation before execution on a real robot.
Offline programming can reduce on-site programming time
and downtime of manufacturing equipment. However, an
accurate 3D model of the working environment is required,
which is rarely available for the flexible manufacturing
processes in small and medium sized enterprises. Even if
simulation is successful, execution on the real robot often
requires adjustments to the program [2].

Beyond these conventional methods, programming by
demonstration (PbD) has recently gained research attention.
Ideally, a programming by demonstration system will extract
a robot program purely from human demonstration [3]. PbD
has proved particularly useful with humanoid robots [3].
However, the problem of handling suboptimal demonstra-
tions is subject to on-going research. All in all, methods
of programming robots by demonstration or other natural
human input, such as speech or gestures, generally lack the
necessary robustness for industrial applications.

Our central approach to facilitate robot programming is to
both visualize robot motions and task plans, and allow 3D
user inputs directly in the robot working cell by means of
augmented reality (AR). A number of groups have applied
augmented reality to ease robot programming, including
recent contributions by Lambrecht and Krüger [4], [5].
For visualization, most systems use head-mounted displays
(HMD) [6], [7], [8] or video see-through (VST) displays
[9], [2], [10] or hand-held see-through displays [4], [5]. Only
Vogl’s group [9], [2] uses laser projection in their augmented
reality work cell to highlight contours; we are the first to
include the complete user interface in the overlay projection
for spatial robot programming.

From the systems above, most of them rely on via points
to interpolate a robot path and do not take obstacles into
account. Only two of the above systems allow the user to
specify collision free volumes (CFV) [8], [10] and generate a
path within these volumes. Even though CFV allow collision
avoidance, they may be cumbersome to define and can be
of complicated shape—if the defined CFV does not allow
enough space from the start to the goal position, no path
will be found. The system presented in this work is novel
in that it allows intuitive robot path planning by defining
a task scenario with obstacles and positions (in contrast to
demonstration or direct trajectory input) in a worktop overlay
projection augmented reality.

III. IMPLEMENTATION

Our intuitive robot path planning system is guided by three
principles: Virtual obstacle are defined by simple geometric
bodies users can specify with a 3D pointing device, robot
postures are likewise defined in task space, and finally valid
paths are automatically planned and executed. This procedure
is also reflected in the user interface, which follows this
sequence. The whole system is integrated in a robot workcell
with an overlay video projection onto the worktop and

Fig. 2. Augmented reality worktop overlay projected on the work table.
Visualized are the interface elements in the bottom corners, the current
cursor projection, user defined obstacles, user defined end-effector positions,
and a projected path. Projections on objects higher than the worktop plane
are correctly modeled by projective geometry.

additional monitors for 3D views, as shown in Fig. 1. The
overlay projection models projective geometry and respects
the foreshortening of objects higher than the worktop plane.
User input is given by a 3D pointing device that is tracked by
a simple stereoscopic infrared motion capture system, which
we made publicly available within the Track-it-Yourself li-
brary (TIY)1. The motion capture algorithm used is described
in [11] and documented in depth in [12]. Motion capture
computations introduce only a minor delay in addition to
image acquisition and visualization, summing up to a total
delay of the user interaction of less than 30 ms. In the
following, we elaborate the central processing steps of our
intuitive task specification system: calibration, obstacle and
end-effector input, and path planning.

A. Projector and Robot Calibration

Calibration is required in order to achieve an accurate
projection for the mouse cursor, obstacles, and robot poses
on the work table. Similarly, the robot coordinate system
has to be calibrated towards the common world coordinate
system defined by the table and its optical tracking markers.

For calibration of the projector unit, we display a number
of points on the work table. In order to find a matching world
coordinate system representation, we point at each of them
using the input device of the calibrated tracking system. In
order to avoid degenerate configurations, the 3D coordinates
of the projected points are measured at different heights.

In order to calibrate the robot itself, the user can specify an
arbitrary position on the table T tool

table that can be reached by
the manipulator. It is then marked with a projected cross and
the user has to move the robot end-effector to this specified
location in order to finish the mapping defined by T robot

table =
T robot

tool T tool
table . Using multiple such measurements, T robot

table is
obtained by least squares minimization.

B. Obstacle Specification

Rather than having the user define collision-free volumes,
we rely on direct definition of obstacle regions in the robot’s

1http://code.google.com/p/tiy/

http://code.google.com/p/tiy/


Fig. 3. User specifies an end-effector orientation for a six DOF industrial
manipulator. The visualization of the robot is constantly updated to give a
preview of kinematic reachability and collision detection.

workspace. Our underlying idea is to make the robot task
definition given by the user completely constraint-based.
Obstacles define regions that the robot must not collide with
and robot postures are purely defined in the task space.
This constraint-based principle enables—in theory—intuitive
robot programming that is independent of the specific prop-
erties of the robot.

Furthermore, obstacles need not necessarily be physical
objects in the robot workspace. In order to limit the robot’s
motion, the user is free to define virtual obstacles, which
are visualized on the worktop and on additional desktop
monitors. A user can thus restrict the robot from moving
into undesired areas in the work cell.

As the goal of obstacle definition is to allow collision-free
path planning, it is usually not necessary to specify the exact
boundaries of complicated, possibly concave bodies. It is
rather practical to specify “obstacle regions” that completely
enclose the obstacles. Specifying obstacle regions, rather
than accurate shapes, of obstacles makes the specification
procedure much more intuitive and easier for the user. To
further facilitate the process, we chose a right prism as the
default geometric body to specify such a region. A right
prism is a geometric body with an n-sided polygonal base
and n-side edges which are of equal length, parallel and
normal to the base face. To define such a right prism, the
user sets the n corners of the upper face of the prism. Since
the user will not be able to specify n points which all exactly
lie in one plane, the z-coordinate of the highest point is used
for all points as a conservative estimate. This guarantees
that the specified surface is a polygon in a plane parallel
to the workspace table plane and all specified points are
inside the volume of the prism. While specifying obstacle
regions, the user constantly receives visual feedback. The
lines connecting the set points are displayed in a 3D view
on the monitor and as an orthographic projection directly on
the table. Furthermore, obstacle regions may be selected by
3D input for editing or deletion.

C. End-Effector Position Specification

Besides obstacles, robot postures are needed to define
waypoints along the desired motion path. Setting individual
joint angles would be tedious and unintuitive, therefore the

augmented robot workcell allows the user to define end-
effector poses directly in the 3D workspace. This concept
follows the constraint-based principle and allows the task to
be defined independent of the robot’s properties.

An end-effector pose consists of a position and an orien-
tation in 3D space. One way to indicate these would be to
directly use the position and orientation of the input device as
the pose of the end effector. This simple solution however has
several shortcomings: First, given the anatomy of the human
arm, many orientations are impossible to reach or can only
be defined rather imprecisely. Second, when using an optical
tracking system, optical markers are often occluded by the
human operator or the input device itself.

Specifying positions in 3D space is not affected by these
limitations, as the probe can always be held at a comfortable
orientation. For these reasons, the robot tool frame specifica-
tion is split into two steps, first specifying the end-effector’s
position and then its orientation. Even though it is obvious
how to indicate a 3D position with a hand-held pointing
device, indicating an orientation is an interesting problem.
To the best of the authors’ knowledge, it is not yet been
investigated which method is the most intuitive to specify a
robot end-effector pose given a 3D pointing device. In our
user study, we compared two such methods with respect to
objective task completion and subjective rating, which are
further elaborated in Section III-D.

Robot tool frame specification is completely interactive:
While moving the pointing device, inverse kinematics calcu-
lation is performed online and a robot configuration fulfilling
all given constraints is visualized. Simultaneously, the robot
configuration is checked for collisions [13] and colliding
bodies of the kinematic chain are highlighted in red.

D. End-Effector Orientation Specification

As mentioned above, directly using the orientation of
the input device as an orientation for the end effector is
problematic. In this work, we investigated two different
methods to specify an end-effector orientation with a tracked,
hand-held pointing device. As these two orientation input
methods are studied in the evaluation in Section IV, we
explain these procedures in detail.

a) Relative Mode: In this mode, the orientation is
changed by rotating the input device. As long as a button
on the input device is pressed, the relative rotation of the
input device is applied to the end-effector. When the button
is first pressed, the current rotation of the input device is
stored as a reference. While the button is pressed and the
input device is rotated, the relative rotation with respect to
the stored starting rotation is computed. This relative rotation
is then applied to the current rotation of the end effector.
After the button is released, the rotation of the input device
has no effect on the end effector anymore. This way, large
end-effector rotations can be achieved by applying multiple
small consecutive rotations.

b) Two Axes Mode: In the two axes mode, the orienta-
tion is set by specifying two axes. The first axis determines
the direction in which the end-effector points, which is



Fig. 4. Robot end-effector orientation specification by two axes: First, the
direction of the z-axis is defined a by point on that axis (left). Then, the
rotation around that axis is defined by point on the x-axis (right).

defined as the end-effector z-axis (s. Fig. 4 left). The second
axis, or end-effector x-axis, determines how the end effector
is rotated around the first axis (Fig. 4 right). In user interac-
tion, an axis is determined by two points in space. To specify
the first axis, the user moves the input device to a point in
space which should lie on the axis and presses the button
once. For the second point that is required to define the axis,
the previously set end-effector position is used. The second
axis determines the rotation of the end-effector around the
first axis, and must therefore be perpendicular to the first. To
achieve this, input device position is orthogonally projected
onto the plane that includes the end-effector position and is
orthogonal to the z-axis.

During all system interactions, the user receives immediate
visual feedback. While moving the input device to define
positions and orientations, all geometric and inverse kine-
matics calculations are performed in real-time. All points
and axes that are being defined are highlighted, and the
virtual end effector is visualized in a pose that complies with
constraints that are being set. More detailed information on
the implementation can be found in [14].

During interaction, the system aims to avoid singularities
and joint limits. The distance to singularities is calculated
using the manipulability measure [15]. Using null space
calculation [16], the joint velocity vector is optimized in a
way to move the robot posture away from singularities. Joint
limits are enforced applying a cost function that penalizes
joint angles close to or beyond joint limits.

For the humanoid robot with its redundant kinematics, the
user is allowed to alter the “elbow” position of the robot by
dragging it to a desired position. The end-effector frame is
not affected by this manual posture optimization due to null
space calculations.

E. Collision-Free Path Planning

The robot manipulator description includes both a kine-
matics specification and a geometry model. During the input
of the end-effector’s waypoints, a matching configuration for
the robot manipulator is generated via inverse kinematics cal-
culation and validated against collision with itself and known
obstacles. In the next step, the system needs to generate a
collision-free path between each specified waypoint.

Path planning for robot manipulators is a common prob-
lem in the robotics domain and several planning algo-
rithms have been developed and studied [17]. Probabilis-
tic Roadmaps (PRM) [18] and Rapidly-Exploring Random

Fig. 5. Visualization of collision free motion after successful path
generation and optimization with a six DOF industrial manipulator.

Trees (RRT) [19] are common examples for sampling-based
approaches in the robot’s configuration space. Due to the
random nature of these planners, they often require additional
path smoothing in order to create high-quality paths [20].

Given the basic nature of our environment, we have opted
to use a RRT variant with two trees and an RRT-connect
step as planning component together with a shortcut post-
optimization step2. The position of the sampled end-effector
frames are visualized during planning and optimization, and
are displayed with gray lines, while the solution path is
displayed in green.

IV. EVALUATION

In order to evaluate our approach, we conducted a user
study, both to evaluate the overall performance of the imple-
mented system, and to compare two methods for specifying
robot end-effector orientations.

The problem of specifying rotations and orientations arises
in many applications, such as in computer-aided design
(CAD) programs. Usually, such programs are controlled with
a two DOF mouse and/or a three DOF trackball and it has
been well studied how rotations can be specified in such
setups [21]. Literature research did not lead to any previous
work on how object rotations can intuitively be set using
an optically tracked six DOF input device. In our work,
we implemented and evaluated the two methods for rotation
specification “relative mode” and a “two axes mode”. The
design of the user study and its results are presented in the
following.

A. Experiment Design

As part of the goal of the experiment was to compare two
input methods, we designed a task which the participants
had to perform twice, once with each method. A detailed
description of the experiment procedure can be found in
the thesis by Springer [14]. In short, the experiment was
organized as follows: The participants were asked to read a
short description of the task they had to perform, including
obstacle specification, and setting start and goal robot tool

2http://www.roboticslibrary.org/

http://www.roboticslibrary.org/


TABLE I
OBJECTIVE RESULTS OF THE TWO ORIENTATION INPUT METHODS

Measurement Input
Mode

Mean Std
Dev

Min Max

Time to
completion [s]

Relative 65.2 31.9 22 150
Two Axes 129.5 87.4 33 370

No. of poses set Relative 2.4 0.81 2 5
Two Axes 3.4 1.3 2 6

Total input device
translation [m]

Relative 13.0 9.2 3.9 39.6
Two Axes 19.4 12.7 4.2 45.3

poses in the scenario. Then, participants were asked to fill
in a short general questionnaire asking for age, gender,
and level of robotics knowledge (with the option not to
answer). The main experiment was divided into two phases,
with our AR system configured in one of the two input
methods “relative mode” and “two axes mode” for each
phase. The order of the two input methods was randomized
by alternating the order of the phases for each participant.
At the beginning of each phase, the user interface was
explained and demonstrated, including hands-on training.
The participants could ask arbitrary questions and practice
with the system for up to total training time of five minutes.

Afterwards, participants were asked to perform the actual
task in a simple scenario, as depicted in Figure 1: Pliers were
attached to the end-effector of the robot, two boxes and one
small drawer were put on the workspace table, and a bolt
was placed on top of one of the boxes. The goal of the task
was to make the pliers move to a position over the bolt, as
if to pick up the bolt (the pliers were not actuated). The
end-effector then had to move over to the small drawer in a
position that would allow the robot to drop off the bolt. After
participants could generate a valid path with the system, they
were asked to fill out a short questionnaire asking for their
subjective feelings about intuitiveness, accuracy, and speed of
the system on a 5-point Likert scale. This phase was repeated
with the system configured using the second input method.
Finally, participants answered a general questionnaire asking
for their preferred input method, ideas for improvement, and
general comments.

B. User Study Results

22 participants (17 male) took part in the user study, with
age ranging from 22 to 47 years, most of them students of the
computer science department. Their level of familiarity with
robotics was mixed, with 41% having used a teach pendant
for robot programming before. The latter were asked addi-
tional questions to compare our system with conventional
teach pendants. All participants were able to complete the
tasks without intervention.

Objective Results: The time participants needed for
specifying robot end-effector poses was measured in order
to compare the two input methods (Table I). For the relative
mode, the average required time was 65 seconds with a
standard deviation of 32 seconds. Using the two axes mode,

the participants required 130 seconds on average with a
standard deviation of 87 seconds. As these data are probably
not normally distributed (which was tested with the Shapiro-
Wilk test), we applied the Wilcoxon-Mann-Whitney test [22].
With this, we verified at a significance level of p < 0.01 that
the relative mode takes less time than the two axes mode.

When specifying the start and goal end-effector poses,
participants were free to discard and repeat to set a pose until
they were satisfied. With the relative mode, 2.4 poses were
set on average, while 3.4 poses were set on average with
the two axes mode. Again applying the Wilcoxon-Mann-
Whitney test, we showed (p = 0.005) that users need to
set less poses when using the relative mode.

Subjective Results: The overall results of the subjective
questionnaire answers match the objective results, with 18
participants preferring the relative mode and only four pre-
ferring the two axes mode. We showed this difference to be
significant with p = 0.002 using a binomial test. In addition,
we checked for a correlation between the level of familiarity
with robotics and the preferred input method. However, we
were not able to reject the independence of the “level of
familiary” to the preferred input method on a 5% significance
level using Fisher’s exact test.

Furthermore, we analyzed the questionnaire of partici-
pants’ feelings about both input methods, given by their level
of agreement about 8 statements on a five-point Likert scale.
Each of the statements falls in one of three categories: speed,
intuitiveness, and accuracy. We used the PARADISE pro-
cedure [23] to generate an iterative, stepwise multiple linear
regression that predicts the subjective survey results based
on the objective measures (task completion time, movement
distance, and number of poses set) and the participant’s
robotics knowledge (as given by the questionnaire). The
generated predictor functions have the linear form w0 +∑n

i=1 wi ·N (mi), with mi representing the predictive mea-
sures. The function N transforms each predictive measure
(task completion time, movement distance, number of poses
set, and robotics knowledge) into a normal distribution us-
ing z-score normalization. The coefficients wi are computed
through stepwise linear regression, and describe the relative
contribution of each predictor to the subjective result.

The resulting predictor functions are shown in Table II:
Only the factors “task completion time” (time) and “robotics
knowledge” (knowledge) are found to have a significant
effect on the model. The R2 value indicates the percentage of
the variance explained by the predictor function. A higher R2

value therefore means that future outcomes are more likely
to be correctly predicted by the model. The p-value in the
column “Significance” indicate the probability of a coef-
ficient being not significant; we included all coefficients
with p < 0.1.

As a result, higher time to completion has a significant
negative influence on the perceived quality of the system
in all three categories. Besides that, a greater level of
robotics knowledge has a significant positive influence on
the perceived factors intuitiveness and accuracy.



TABLE II
PREDICTOR FUNCTIONS FOR EACH CATEGORY ON THE QUESTIONNAIRE

Category Predictor Function R2 Significance

Intuitiveness 11.51− 1.31 ∗ N (time) + 0.69 ∗ N (knowledge) 0.27 time: p < 0.001, knowledge: p < 0.1
Accuracy 15.14− 1.63 ∗ N (time) + 0.91 ∗ N (knowledge) 0.33 time: p < 0.001, knowledge: p < 0.05
Speed 3.72− 0.62 ∗ N (time) 0.35 time: p < 0.001

From the general questionnaire, we could find that 18 of
the 22 participants find the input device intuitive to use (12
“agree” and 6 “strongly agree”). Considering the different
steps of our robot programming approach, 21 of 22 found
the obstacle definition intuitive (15 of them “strongly agree”),
and 15 of 22 found the path planning accurate. Of the nine
participants that have programmed a robot with a teachpad
before, all agree that our system is easier to use than a
teachpad. Considering free text comments, 9 participants
positively mentioned the system’s intuitiveness. Criticism
included the limited accuracy of the robot (caused by an
imperfect calibration between robot and tracking system),
the robustness of the tracking system, and lacking feedback
why inverse kinematics fails. While our users’ comments
indicate some space for improvement in the robot–projector
calibration and the robustness tracking the input device, these
points are rather due to easily remedied technical issues and
not due to the general approach.

V. CONCLUSION AND FUTURE WORK

The overall results of our user study are very encouraging
and indicate that our augmented reality approach is a promis-
ing method for intuitive robot programming. Considering
the more specific research question how 3D orientations
can be specified with a hand-held 6D input device, results
clearly indicate the relative mode to be superior over the
two axes mode (concerning speed and subjective accuracy
and intuitiveness), as defined in Section III-D.

Future work may include several technical improvements
on input device tracking and calibration, as well as an in-
depth user study on the general problem how to input robot
end-effector poses.

VI. ACKNOWLEDGMENTS

This research was supported by the European Union’s
Seventh Framework Programme through the projects JAMES
under grant agreement no. 270435 3 and SMErobotics under
grant agreement no. 287787 4.

REFERENCES

[1] R. Schraft and C. Meyer, “The need for an intuitive teaching method
for small and medium enterprises,” VDI Berichte, vol. 1956, p. 95,
2006.

[2] G. Reinhart, U. Munzert, and W. Vogl, “A programming system
for robot-based remote-laser-welding with conventional optics,” CIRP
Annals-Manufacturing Technology, vol. 57, no. 1, pp. 37–40, 2008.

3http://www.james-project.eu/
4http://www.smerobotics.org/

[3] R. Zollner, T. Asfour, and R. Dillmann, “Programming by demonstra-
tion: Dual-arm manipulation tasks for humanoid robots,” in Intelligent
Robots and Systems. IEEE/RSJ Intl Conf on, vol. 1, 2004, pp. 479–484.

[4] J. Lambrecht and J. Krüger, “Spatial programming for industrial robots
based on gestures and augmented reality,” in Intelligent Robots and
Systems (IROS), IEEE/RSJ Intl Conf on, 2012, pp. 466–472.

[5] J. Lambrecht, M. Kleinsorge, M. Rosenstrauch, and J. Krüger, “Spatial
programming for industrial robots through task demonstration,” Int J
Adv Robotic Sy, vol. 10, no. 254, 2013.

[6] T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, and T. Lkstad,
“Augmented reality for programming industrial robots,” in Proc Int
Symposium on Mixed and Augmented Reality, 2003, p. 319.

[7] S. Green, J. Chase, X. Chen, and M. Billinghurst, “Evaluating the
augmented reality human-robot collaboration system,” International
journal of intelligent systems technologies and applications, vol. 8,
no. 1, pp. 130–143, 2010.

[8] J. Chong, S. Ong, A. Nee, and K. Youcef-Youmi, “Robot programming
using augmented reality: An interactive method for planning collision-
free paths,” Robotics and Computer-Integrated Manufacturing, vol. 25,
no. 3, pp. 689–701, 2009.

[9] M. Zäh and W. Vogl, “Interactive laser-projection for programming
industrial robots,” in 5th IEEE and ACM International Symposium on
Mixed and Augmented Reality, 2006, pp. 125–128.

[10] H. Fang, S. Ong, and A. Nee, “Interactive robot trajectory planning
and simulation using augmented reality,” Robotics and Computer-
Integrated Manufacturing, 2011.

[11] A. Gaschler, “Visual motion capturing for kinematic model estimation
of a humanoid robot,” in Pattern Recognition, 33rd DAGM Symposium,
ser. Lecture Notes in Computer Science, vol. 6835, Sept. 2011, pp.
438–443.

[12] ——, “Real-time marker-based motion tracking: Application to kine-
matic model estimation of a humanoid robot,” Master’s thesis, Tech-
nische Universität München, Munich, Germany, Feb. 2011.

[13] G. van den Bergen, Collision Detection in Interactive 3D Environ-
ments, ser. The Morgan Kaufmann Series in Interactive 3D Technol-
ogy. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2004.

[14] M. Springer, “An augmented reality based system for intuitive robot
programming,” Master’s thesis, Technische Universität München, Mu-
nich, Germany, Nov. 2012.

[15] T. Yoshikawa, “Manipulability of robotic mechanisms,” The Interna-
tional Journal of Robotics Research, vol. 4, no. 2, pp. 3–9, June 1985.

[16] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal of
Robotics and Automation, vol. 3, no. 1, pp. 43–53, Feb. 1987.

[17] S. M. LaValle, Planning Algorithms. Cambridge Univ Press, 2006.
[18] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, Aug. 1996.

[19] J. J. Kuffner, Jr. and S. M. LaValle, “RRT-connect: An efficient
approach to single-query path planning,” in IEEE International Con-
ference on Robotics and Automation, Apr. 2000, pp. 995–1001.

[20] R. Geraerts and M. Overmars, “Creating high-quality paths for motion
planning,” Robotics Research, vol. 26, no. 8, pp. 845–863, Aug. 2007.

[21] M. J. Van Emmerik, “A direct manipulation technique for specifying
3d object transformations with a 2d input device,” in Computer
Graphics Forum, vol. 9, no. 4, 1990, pp. 355–361.

[22] P. Teetor, R Cookbook. O’Reilly Media, Incorporated, 2011.
[23] M. Walker, C. Kamm, and D. Litman, “Towards developing general

models of usability with paradise,” Natural Language Engineering,
vol. 6, no. 3 & 4, pp. 363–377, 2000.

http://www.james-project.eu/
http://www.smerobotics.org/

	Introduction
	Related Work
	Implementation
	Projector and Robot Calibration
	Obstacle Specification
	End-Effector Position Specification
	End-Effector Orientation Specification
	Collision-Free Path Planning

	Evaluation
	Experiment Design
	User Study Results

	Conclusion and Future Work
	Acknowledgments
	References

