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Abstract—Geometric volumes can be used as an intermediate
representation for bridging the gap between task planning, with
its symbolic preconditions and effects, and motion planning,
with its continuous-space geometry. In this work, we use sets of
convex polyhedra to represent the boundaries of objects, robot
manipulators, and swept volumes of robot motions. We apply
efficient algorithms for convex decomposition, conservative swept
volume approximation and collision detection, and integrate these
methods into our existing “knowledge of volumes” approach to
robot task planning called KVP. We demonstrate and evaluate
our approach in several task planning scenarios, including a
bimanual robot platform.

I. INTRODUCTION

The problem of combining task planning and motion plan-
ning in a robot system presents significant representational
difficulties that must be overcome: high-level task planners
typically rely on symbolic representations of objects and
actions, while motion planning systems need to reason about
physical bodies and robot motion in a continuous space.
Integrating geometric and symbolic reasoning in a common
framework is therefore a challenging and important task.

In this paper, we describe an approach that represents the
boundaries of objects, robots, and swept volumes of robot
motions as geometric volumes, which serves as an intermedi-
ate representation between continuous and discrete reasoning.
In particular, this work focuses on algorithms for convex
decomposition, conservative swept volume generation, and
collision detection, implemented in an existing “knowledge of
volumes” approach to robot task planning called KVP [9, 10].

In addition to using volumes as a representation of robot
motions and objects, KVP is further characterized by symbolic
planning at the knowledge-level, with direct function calls to
the robotics component for geometric and kinematic queries.
As a symbolic AI planning system, we use the general purpose
PKS planner (Planning with Knowledge and Sensing [18, 19]),
which allows contingent planning with incomplete information
and sensing actions. In particular, this approach enables us to
use planned sensing actions as preconditions for manipulation,
rather than being hard-coded as tasks themselves [10].

The remainder of the paper is organised as follows. In Sec-
tion II, we situate our work with respect to related approaches.
In Sections III-A and III-B, we analyse the efficiency of our
approach, show the quadratic convergence of our swept vol-
ume approximation in joint space, and describe a complexity

Fig. 1. Robot tasks are modelled by symbolic actions and geometric volumes,
representing both swept volumes of robot motions (red), and object boundaries
as sets of convex polyhedra (blue for movable objects, grey for static obstacles)
[9].

class for collision checking. Details of the symbolic planner
are given in Section III-C. Finally, we evaluate the efficiency
of the KVP approach in Section IV, in three example domains.

II. RELATED WORK

Although the problem of robot task planning has been
investigated since the days of early robotic systems like
Shakey [17], more recently the field has gained substantial
attention, both from the planning and robotics communities.
Modern approaches to robot task planning include a diverse
range of techniques from probabilistic models in artificial
intelligence [14], closed-world symbolic planning [2, 21],
formal synthesis [15, 3], and multimodal motion planning [12].

Our KVP approach is in part inspired by Kaelbling and
Lozano-Pérez’s work on hierarchical task and motion plan-
ning [13], borrowing the continuous geometry of swept vol-
umes. However, while the geometric preconditions may be
similar, their underlying aggressively hierarchical planning
strategy differs from our knowledge-based planning approach,
which has previously been used to connect robot vision and
grasping with symbolic action [20]. In more recent work, Kael-
bling and Lozano-Pérez [14] present a belief space planner
which models probability distributions over states, making it
robust against uncertainties. In contrast, our choice of sym-
bolic planner is more geared towards structured environments
with incomplete and discrete information. In both approaches,
sensing actions may be formulated as preconditions for ma-
nipulation, and need not be hard-coded as tasks themselves.



TABLE I
REMOVE n OBJECTS: SYMBOLIC DOMAIN DEFINITION

symbols
types: object;
predicates: isRemoved/1;
constants: object bottle1, bottle2 ...

action remove(?o : object)
preconds:
K(!isRemoved(?o)) &
forallK (?p : object)
( K(isRemoved(?p)) |
!extern(graspMotionCollides(?o, ?p)) )

effects:
add(Kf, isRemoved(?o))

goal: forallK (?o : object)
(K(isRemoved(?o)))

III. APPROACH

We will demonstrate our approach with several examples,
among them the very simple REMOVE n OBJECTS scenario
defined in Table I, which involves clearing objects from a table.
In order to pick up and remove an object, collisions with other
objects need to be avoided. A successful plan must therefore
include remove actions in an appropriate order (see Figure 4).
To represent these manipulation actions, we automatically
decompose robot and object geometry models into sets of
convex polyhedra, which can be prepared off-line. During
planning, the evaluation of kinematic and geometric queries
(e.g., graspMotionCollides in the remove action) requires
the calculation of motion paths, swept volumes, and collision
checking. Symbolic planning is performed by the PKS planner,
which invokes the geometric reasoner as needed, to evaluate
preconditions and effects. We discuss the algorithms and
components behind this process in greater detail below.

A. Convex Decomposition of Volumes

In our KVP approach, it is crucial to efficiently represent
arbitrary objects and robot manipulators as sets of convex
polyhedra. In the general case, however, decomposing a non-
convex polyhedron into a small (or even minimal) set of con-
vex polyhedra is a challenging problem. Although the problem
of minimal, exact decomposition is known to be NP-hard,
Mamou and Ghorbel [16] recently proposed an approximate
algorithm that is sufficiently efficient and precise for practical
instances. This approach shows better approximation results
than existing algorithms, both with respect to approximation
errors as well as the number of decomposed convex polyhedra.

In principle, their algorithm hierarchically segments the
non-convex polyhedron on its dual graph by half-edge decima-
tion. The segmentation is guided by a weighted cost function,
trying to minimize concavity and an aspect ratio measure
they define as the squared perimeter divided by the area of
a given mesh, adjusted by a constant factor to yield one in
the case of a disk. The cost function is weighed such that the
aspect ratio guides the first few iterations of the algorithm,

Fig. 2. Convex decomposition allows an efficient approximation of swept
volumes [9]. A typical robot mesh has 106 vertices and is non-convex (left).
Convex decomposition [16] simplifies this to 6 convex bodies with 10 vertices
each (centre), allowing a typical swept volume description with only 40 convex
polyhedra, totalling 400 vertices (right).

quickly simplifying the mesh. After that, the simplification is
mostly lead by the concavity measure, which they define as the
maximum distance of mesh points projected onto the convex
hull of that mesh, measured in surface normal direction.

As indicated in Figure 2, Mamou and Ghorbel’s algorithm
produces a concise set of convex bodies, which are well suited
for efficient collision detection. For instance, a typical six-axes
robot manipulator can be approximated by 6 to 10 convex
polyhedra, totalling no more than 100 vertices. The swept
volume of a typical motion of such a robot will simplify to
no more than 20–100 convex polyhedra.

B. Efficient Swept Volume Computation

The representation of a robot’s volume as a small set of
convex polyhedra allows us to efficiently compute the swept
volume of a robot motion. In the static case, the volume of
the robot geometry R is given by the union of n convex
hulls of vertices R = ∪n conv(Vn). More generally, we
can also efficiently approximate the swept volume SV of a
robot geometry R along a configuration space path Q. In
order to show the quadratic convergence of the swept volume
approximation, we first consider the motion of a single convex
polyhedron, which is given by the vertices V . Let rmax be the
maximum distance of a vertex to the first axis, summing up
all link lengths and the distance to the last axis. It is a well-
known fact that a point on a single link of length r rotating
by an angle q < π/2 will deviate from the chord (straight line
from start to end) by ε = r cos (q/2) [23]. For general serial
kinematics of multiple revolute joints, Baginski [1] describes
an upper bound for the deviation of the path of a point from
the chord of that path:

ε ≤ rmax

(
1− cos

(∑
i |qi|
2

))
. (1)

Intuitively, this bound is tight when all link lengths but the
last one tend to zero and all joints rotate in the same direction



around the same axis. ([22] describes a similar bound by
roughly approximating path segments as screw motion.) In
our implementation, we calculate the bound for each link and
obtain tighter bounds especially for the first few joints.

Using the second order series expansion of the cosine

cos(q) ≥ 1−
(
q2
/

2
)

(2)

we can approximate Eq. 1 as a quadratic function of the
angular step size ∆q for our swept volume approximation:

ε ≤ rmax
(
∑

i |∆qi|)
2

8
. (3)

Choosing an angular step size ∆q =
√

8ε/rmax, we can
therefore generate swept volumes at a desired precision ε,
and at a quadratic convergence rate. To construct the swept
volume, we compute the convex hull conv for each convex
polyhedron sampling the path Q as q(i) at angular distances
∆q and applying the forward kinematic transformation FK,
as implicitly done in [22, 23]:

SV(R,Q) =
⋃
n

⋃
i

conv (FK(q(i+ 1))Vn ∪ FK(q(i))Vn) .

(4)
Denoting |Q| as the length of the path in joint space, it
follows that O(n |Q| /

√
ε) convex polyhedra are needed to

represent the swept volume of a robot motion at a precision
of ε, with each one having at most 2 |V | vertices. This result
implies that doubling the number of sampling points of the
path Q will quadruple the precision of the approximation.
In order to construct a conservative (superset) swept volume,
ε-enlarged models of R may be computed off-line and—
provided R is a conservative approximation of the real robot
geometry—all computed swept volumes are conservative and,
most importantly, false negatives in collision checking are
avoided.

For collision checking, we use the Bullet Physics Library1

implementation of the Gilbert-Johnson-Keerthi (GJK) algo-
rithm [11], which has been shown to detect collisions between
two convex polyhedra at a computational complexity linear in
the total number of involved vertices. For an environment of m
convex polyhedra, a collision check with a swept robot volume
can be performed in O(nm |Q| /

√
ε) time. However, for many

practical problems, the computation can be leveraged by fast
broad-phase algorithms and may be considerably quicker.

C. Planning with Knowledge and Sensing (PKS)

Symbolic planning in KVP relies on the general-purpose
PKS planner [18, 19], which constructs plans in the presence
of incomplete information and sensing actions. PKS works
at the knowledge level by reasoning about how the planner’s
knowledge state, rather than the world state, changes due
to action. PKS works with a restricted subset of a first-
order language, allowing it to support a rich representation
with features such as functions and run-time variables. This

1http://bulletphysics.org (accessed May 15, 2013)

approach differs from planners that work with possible worlds
models or representations based on belief states.

PKS is based on a generalization of STRIPS [7]. Unlike
STRIPS, which uses a single database to model the world
state, PKS’s knowledge state is represented by five databases,
each of which models a particular type of knowledge and has
a fixed, formal interpretation in a modal logic of knowledge.
Actions can modify any of these databases, which has the
effect of updating the planner’s knowledge state. To ensure
efficient inference, PKS restricts the type of knowledge (espe-
cially disjunctions) that it can represent in each of its database:
Kf : This database is like a standard STRIPS database except
that both positive and negative facts are permitted and the
closed-world assumption is not applied. Kf is used to model
action effects that change the world. Kf can include any
ground literal `, where ` ∈ Kf means “the planner knows `.”
Kf can also contain known function (in)equality mappings.
Kw: This database models the plan-time effects of sensing
actions that return binary values. A formula φ ∈ Kw means
that at plan time, the planner knows whether φ or ¬φ holds,
and that at run time this disjunction will be resolved. The use
of Kw for robot sensing is described in detail below.
Kv: This database stores information about function values
that will become known at execution-time. In particular, Kv

can model the plan-time effects of sensing actions that return
constants. Kv can contain any unnested function term f , where
f ∈ Kv means the planner “knows the value of f .”
(PKS also includes two additional databases, Kx and LCW ,
which aren’t used in this paper.)

PKS knowledge states can be queried in three different
ways. First, simple knowledge assertions can be tested with
a query of the form K(φ), which asks “is a formula φ true?”
Second, a query Kw(φ) asks whether φ is known to be true or
known to be false (i.e., does the planner “know whether φ”).
Finally, Kv(t) asks “is the value of function t known?” The
negation of the above queries can also be used.

Using this database representation and query mechanism,
symbolic actions are defined in PKS by describing their
(typed) parameters, preconditions, and effects. Preconditions
contain a list of queries that must evaluate as true before an
action can be applied. Effects are described by a list of add
and del operations, similar to STRIPS. For instance, Table I
shows the definition of a PKS action remove(?o), which has
the effect of clearing an object ?o from a table.

PKS also has the ability to model sensing actions that return
information about the state of the world, an idea that is impor-
tant for robot task planning [10]. In particular, PKS offers two
databases, Kw and Kv , that represent unknown information
(binary or function values, respectively) that will become
known at run time after the sensing actions are executed in
the world. Using these databases, PKS can reason about the
possible outcomes of such actions during plan construction,
by generating plans with contingencies. For instance, the
senseWeight(?o) action in Table III is an action of a sensing
action that tests whether an object ?o is spillable or not.

http://bulletphysics.org


TABLE II
BIMANUAL SCENARIO: EXAMPLE ACTIONS

action pickUp(?r:robot, ?o:object, ?l:location)
preconds:

K(?l = getObjectLocation(?o)) &
K(handEmpty(?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, ?l = getObjectLocation(?o)),
del(Kf, handEmpty(?r)),
add(Kf, inHand(?o, ?r))

In general, PKS builds plans by reasoning about actions in
a forward-chaining manner: if the preconditions of an action
are satisfied by the planner’s knowledge state, then the action’s
effects are applied to produce a new knowledge state. Planning
then continues from this new state. PKS can also build plans
with contingencies by considering its Kw and Kv knowledge.
For instance, if φ is in Kw then PKS can introduce two
branches into a plan: along one branch φ is assumed to be
true, while along the other branch ¬φ is assumed to be true.
Planning then continues along each branch until the goal
conditions (a set of queries) are satisfied.

A second feature of PKS which is key to the KVP approach
is its ability to integrate externally-defined procedures (e.g.,
from support libraries) with its internal reasoning mechanisms.
While the idea of transferring reasoning to external processes
is not a new idea [5, 6, 4], the introduction of such techniques
in PKS is a more recent extension. A special keyword, extern
provides an interface to this facility, where an expression
extern(proc(~x)) means that the parameters ~x should be
passed to an external procedure proc for execution. ~x can
contain symbols defined in PKS’s knowledge state, providing a
link between the planner and the externally-defined procedure.
The return value of an extern call is passed back to PKS,
which can perform additional tests on this value, or include
it in its knowledge base. For instance, the remove action in
Table I uses an extern call to invoke path planning and col-
lision checking in the evaluation of graspMotionCollides.
An extern call can also be directed to cache its return value
for efficiency. As a result, PKS’s core reasoning capabilities
can be augmented by the addition of motion planning, collision
detection, and other special purpose robotics libraries.

IV. EVALUATION

We now demonstrate and evaluate the efficiency of our
approach with three scenarios. In the REMOVE n OBJECTS
scenario, a single manipulator is used to remove n objects from
a table while avoiding collisions. This scenario can readily
readily be generalised to multiple manipulators, as shown in
the BIMANUAL scenario. As a third example, we give the
FORCE SENSING scenario, which used a sensing action that
can be modelled by the knowledge-level planner.

For the REMOVE n OBJECTS scenario defined in Table I,
we evaluate the performance of the planner with respect to
the number of objects n, shown in Table IV. For this simple

Fig. 3. In the FORCE SENSING scenario, a compliant robot manipulator
can sense if beverage containers are filled by weighing them, and holds
them upright while moving to prevent spilling, unless they are known to be
completely empty or not opened. [10]

TABLE III
FORCE SENSING SCENARIO: EXAMPLE ACTIONS

action senseWeight(?o:object)
preconds:

K(isGrasped(?o))
effects:

add(Kw, isSpillable(?o))

action transferUpright(?o:object)
preconds:

K(isSpillable(?o)) &
K(isGrasped(?o)) &
K(!isRemoved(?o))

effects:
add(Kf, isRemoved(?o))

scenario, the planning time seems almost linear in the number
of objects. In general, planning time is lower than or within
the same order of magnitude as typical execution on a robot
would take. Even though the number of collision tests may be
higher than quadratic in the worst case, it must be noted that
collisions of convex polyhedra can be checked very efficiently
and collision checking only amounts to a negligible fraction
of the total planning time for the numbers observed. Swept
volume generation time mostly depends on the number of
objects grasped, and slightly on the location of those grasps.
In the worst case, only one of the objects can be picked up at
a time. Even though this will increase the number of collision
checks, influence on the total planning time is minor. As a
demonstration, a sample task with n = 3 bottles was executed
on a real robot, as depicted in Figure 4.

The BIMANUAL scenario shows that pick-and-place actions
can be planned for arbitrary numbers of manipulators, denoting
the respective robot ?r as an argument for each manipulation
action in the symbolic domain, as shown in Table II. It is
worth noting that multiple manipulators may lead to non-



TABLE IV
EVALUATION OF THE REMOVE n OBJECTS SCENARIO
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Objects at random locations
2 2.77 0.35 0.43 1.99 1936 121 1 .00006
3 5.49 0.73 0.40 4.36 3168 198 4 .00021
4 8.42 1.03 1.06 6.33 4400 275 6 .00010
5 13.40 1.72 1.55 10.13 8976 561 22 .00049
6 14.60 1.77 2.69 10.14 8976 561 18 .00030
7 18.52 1.99 4.35 12.18 10912 682 22 .00035
8 19.15 2.32 2.71 14.12 12672 792 35 .00050
9 22.21 2.77 3.04 16.40 13376 836 70 .00088

10 24.33 2.99 3.10 18.23 15312 957 94 .00135
15 40.32 4.91 5.63 29.78 25872 1617 314 .00306
20 56.70 6.60 10.16 39.93 34848 2178 530 .00601

“Worst case”: Objects in a line, only 1 of n can be picked up
2 2.66 0.34 0.35 1.97 1936 121 1 .00004
3 5.56 0.69 0.78 4.09 4224 264 3 .00009
4 8.30 0.99 1.13 6.18 6160 385 6 .00012
5 10.93 1.33 1.45 8.15 8096 506 10 .00018
6 13.33 1.63 1.78 9.92 9680 605 15 .00029
7 18.97 2.25 2.89 13.83 13552 847 36 .00059
8 21.81 2.57 3.50 15.74 15488 968 44 .00071
9 25.21 2.97 4.54 17.70 17424 1089 112 .00140

10 27.85 3.23 5.12 19.50 19360 1210 125 .00170
15 42.01 4.89 7.73 29.36 28336 1771 544 .00581
20 56.81 6.72 8.75 41.32 36256 2266 1257 .01227

trivial behaviour: in order to move bottles from the right side
of the bar to the goal location (Figure 1), one arm needs to
move them to a location that the second arm can reach—an
intermediate location to “pass it on” to a different manipulator.
A previous implementation of this scenario, demonstrated on
a two-manipulator robot setup, is described in [9, 8].

The FORCE SENSING scenario (Figure 3) illustrates the
use of sensing actions. (A more detailed account of this
domain is given in [10].) Table III shows the definitions of
the sensing action senseWeight and the manipulation action
transferUpright. When grasping a beverage container ?o,
the robot can sense its weight and will come to know whether
it can be spilled or not, adding this knowledge to PKS’s Kw

database. The planner will then generate a contingent plan
with binary branches, each of which account for one possible
outcome of this knowledge at execution time.

V. CONCLUSION AND FUTURE WORK

In this paper, we extend our “knowledge of volumes” ap-
proach to robot task planning (KVP) and its representation of
volumes as sets of convex polyhedra. In particular, we present
a conservative ε-precise algorithm for swept volume compu-
tation of sets of convex polyhedra with quadratic convergence

and discuss the efficiency of this representation in collision
detection and, more generally, in pick-and-place tasks. We fur-
ther demonstrate the effectiveness of KVP in several scenarios,
including those involving multiple manipulators.

As future work, we plan to generalize our approach to
mobile manipulation and investigate tighter bounds on ∆q
with respect to the kinematics, possibly allowing even more
efficient swept volume generation.
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