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ABSTRACT
In this publication, we analyse how humans use head pose in
various states of an interaction, in both human-human and
human-robot observations. Our scenario is the short-term,
every-day interaction of a customer ordering a drink from
a bartender. To empirically study the use of head pose in
this scenario, we recorded 108 such interactions in real bars.
The analysis of these recordings shows, (i) customers follow
a defined script to order their drink—attention request, or-
dering, closing of interaction—and (ii) customers use head
pose to nonverbally request the attention of the bartender,
to signal the ongoing process, and to close the interaction.

Based on these findings, we design a hidden Markov model
that reflects the typical interaction states in the bar sce-
nario and implement it on the human-robot interaction sys-
tem of the European JAMES project. We train the model
with data from an automatic head pose estimation algo-
rithm and additional body pose information. Our evaluation
shows that the model correctly recognises the state of inter-
action of a customer in 78.3% of all states. More specifically,
the model recognises the interaction state “attention to bar-
tender” with 83.8% and “attention to another guest” with
73.0% correctness, providing the robot sufficient knowledge
to begin, perform, and end interactions in a socially appro-
priate way.

Keywords
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Figure 1: The robot bartender of the JAMES
project uses head pose estimation to infer the state
of interaction of human customers in a multi-party
bar scenario.

Humans use head pose and gaze direction as nonverbal
cues to express communicative acts and their visual focus of
attention. This has been decribed in literature many times,
for example by Kendon [8], who recorded conversations of
two humans. He found that humans use gaze direction dif-
ferently depending on the length of their verbal utterance.
When humans speak long utterances, for example to discuss
a personal view, they look away from their interaction part-
ner at the beginning of the utterance and look back to their
partner at the end of the utterance to signal the opening of a
possibility to enter the discussion. When using short utter-
ances, for example to ask questions to gather information,
humans mostly look directly at their interaction partner.

Clark [3] lists head pose as one of the signals that hu-
mans use for directing-to communicative acts, i.e. humans
use head movements to direct the attention of a person they
are speaking with to an entity in the environment of the in-
teraction partners or to themselves. Langton et al. show in
[10], that gaze direction is an important cue to express vi-
sual attention, but head direction and pointing gestures also



contribute significantly to the computation of the attention
of an interaction partner. Furthermore, Langton et al. [11]
found that a combination of head pose estimation and recog-
nition of gaze direction is needed to exactly determine the
visual attention of an interaction partner. Stiefelhagen [20]
found that for recorded meetings, head pose alone is enough
to correctly recognise the visual focus of attention of a meet-
ing participant in 89% of the time.

In this publication, we recorded and analysed ordering
sequences in bars, in which customers order and receive
drinks from a human bartender. The quantitative analy-
sis of these recordings shows that customers follow a fixed
sequence to order a drink. The data further suggests that
head pose is an important cue that is used by customers
and bartenders in all steps of the ordering sequence. Based
on these findings, we design and train a hidden Markov
model using head pose estimation, allowing a robot bar-
tender to automatically recognise the interaction state of
humans in a bar scenario. We then implement and evaluate
this model on the human-robot interaction system of the
European project JAMES1—Joint Action for Multimodal
Embodied Social Systems. Figure 1 shows the robot dur-
ing an interaction with a customer. The robot setup con-
sists of two industrial robot arms (Mitsubishi Melfa RV-6SL)
with compliant hands (Meka H2), and an animatronic head
(Philips iCat) which is capable of producing emotions and
lip-synchronised speech. The robot is equipped with two
stereo cameras (PointGrey Bumblebee) and a depth sensor
(Microsoft Kinect).

2. RELATED WORK
The challenge of visual head pose estimation is a well-

studied field that offers various approaches and techniques.
Murphy et al. [13] give an overview of head pose estimation
approaches. The authors argue that head pose estimation
is the first step that enables recognition of other nonver-
bal cues, including detection of gaze direction and emotion
recognition. Humans can easily estimate the head pose of an
interaction partner, but for a computer vision system this
ability is rather difficult to achieve. Technically, head pose
estimation is the recovery of the 3D pose of a human head
from digital images or continuous image sequences. The
pose usually covers pitch, yaw and roll angles, as well as the
approximate position of the head in space.

The diversity of head pose estimation techniques can roughly
be classified into appearance-based methods and model-based
methods. Appearance-based methods, or image-based meth-
ods, consider the image region of the face as a whole. One
way to recover head poses is to apply coarse-to-fine classi-
fiers, which are previously trained on the pose space [12].
This classification approach naturally delivers only discrete
output, especially when a small set of combined detection-
pose estimation classifiers is used [7]. Another common
appearance-based method is image-based face tracking, which
allows rather accurate relative motion recovery, but usu-
ally faces the problem of proper initialisation of a perfectly
frontal face.

Model-based methods, or feature-based methods, abstract
from the actual image region and recover low-dimensional
features, such as the position of facial features. These fea-
tures can be processed by pure geometry [5], by a trained

1http://www.james-project.eu

artificial neural network (ANN) [21], or by other non-linear
regression methods [13]. Of course, appearance-based and
feature-based techniques can be combined, for example by
tracking facial features [14] or using dense stereo images and
neural network processing [18].

3. APPROACH
In this section, we present our findings on the usage of

head pose in human-human bar scenarios (Section 3.1), our
implementation for automatic head pose estimation (Section
3.2), and our model of the interaction state of the human
customers (Section 3.3).

3.1 Human-Human Observation
In everyday interactions between two or more humans,

mutual attention is established automatically. As Kendon
[9] proposed, it is functional and necessary to establish mu-
tual attention to begin a conversation. For an everyday con-
versation, Kendon’s domain was defined by turning to each
other and exchanging mutual gazes. On the basis of the im-
portance of mutual gaze, Bavelas et al. [1] showed that gaze
windows are produced by speakers to request a listener’s re-
sponses. Furthermore the authors found that listeners tend
to look at speakers more often so they are able to respond
quickly and appropriately, if their response is requested. As
communicational behaviour and gaze exchange is done with
routine by humans in everyday life it is important to train
social robots to be able to interpret the head pose of humans,
too.

To empirically study how humans interact in bar scenar-
ios, we recorded bartenders and customers in several bars in
Germany. For the recordings, we installed two cameras and
two microphones to record bartenders and customers in a
horizontal viewing angle of approximately 45 ◦, covering an
area of 3 to 4 meters in front of the bartender’s working area.
For this study, we put our focus on situations in which the
customers ordered drinks from the bartender. After anno-
tating the video data with ELAN [19]2, our data corpus con-
tains 108 successful ordering interactions. The annotation
includes the interaction state of the customer (waiting-at-
bar, bidding-for-attention, talking-to-other-customers, etc.),
the focus of attention of bartender and customers, gestures,
and speech.

We found that from the viewpoint of the customer a typ-
ical ordering interaction consists of three states: (1) atten-
tion request towards bartender, (2) ordering of one or more
beverages, and (3) closing of interaction by payment and
exchange of polite phrases. The bartender reacts to these
states by (1) acknowledging the attention request, (2) serv-
ing the ordered drink, and (3) asking for payment. The
sequence of interaction states can also include substates, for
example some customers ask for information about the avail-
able choice of drinks. However, we found that the usage of
head pose does not differ from the three main interaction
states that we are focusing on in this work. Please refer to
[6] for a complete overview of all states of interaction that
we found. The data analysis shows that mutual attention
is crucial to initiate an ordering interaction as well as for

2ELAN is a annotation programme by the Max Planck In-
stitute for Psycholinguistics, Nijmegen, The Netherlands.
It can be downloaded at http://www.lat-mpi.eu/tools/
elan/.
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Customer I think I’d like to have a “Cape Cide”, if it is in the
fridge over there...
[customer orders drink and mentions uncertainty about the
availability of the drink]

Bartender Yes
[bartender verbally acknowledges request but continues
working and does not look up to customer]

Customer ... because it’s not in the one right here ...
[customer did not hear the verbal acknowledgement of bar-
tender and continues with ordering]

Customer ... if I saw it right, but maybe I was blind-folded
[since the customer gets no visual acknowledgement by the
bartender, she gets uncertain about her order]

Figure 2: Sample dialogue in which a bartender does
not follow the established protocols of using head
pose to acknowledge a customer’s request. In the
consequence, the customer gets uncertain about the
order and the interaction slows down.

a successful and fluent interaction in the remaining states
of interaction. Thus, the bartender has to understand the
verbal and nonverbal signals by the customer. For an ex-
ample, it would be inappropriate for the bartender to ask a
customer for another order while he or she is engaged in a
conversation.

In the data analysis of our data corpus, we found that in
interaction state (1) attention request, customers mainly re-
quest the bartender’s attention nonverbally. They use their
physical presence at the bar, and in particular the head and
body direction as cues to display their request for attention.
In our corpus, we found 103 requests for attention. Out of
these 103 attention requests, 92 persons directed their head
towards the bartender to request the attention of the bar-
tender. From these 92 persons, 63 directed their body to
the bartender as well. Only 11 participants directed their
body to the bartender but not their head, because they were
engaged in other activities, including talking to other cus-
tomers or reading the bar menu.

During interaction state (2) ordering, 101 out of 108 per-
sons directed their head to the bartender, the remaining
seven persons did not direct their head straight to the bar-
tender because they preferred talking sideways to increase
the loudness of their voices, which was due to loud music
that was played in some of the locations in which the record-
ings took place. Again, head pose served as the main cue
for the attention of customers who spoke to the bartender
at the same time. Due to environmental factors at the lo-
cations, such as bad lighting conditions and glasses hiding
customers’ eyes, we were not able to analyse gaze of all of
the customers. However, 65 customers clearly looked at the
bartender during the interaction, and in the remaining cases,
the bartender was still able to acknowledge their requests.
Thus, we assume that the typical gaze window, as intro-
duced by Bavelas et al., can also be observed in our data.
To strengthen this point, in Figure 2 we present a dialogue
between a customer and a bartender, which was taken from
one of our recordings. In this example, the bartender mixes
a drink while asking for the customer’s order.

In analogy to Bavelas’ observation, which was that story
tellers become uncertain when the listener’s appropriate re-

sponses are lacking, in the example dialogue the customer
becomes uncertain because she does not hear the bartenders
acknowledgement. She looks at the bartender who does not
look up but finishes mixing a drink first. So, the customer
begins to justify her order, still waiting for a verbal or non-
verbal response by the bartender.

In interaction state (3) closing of interaction, 48 customers
did not look at the bartender while performing the last part
of the interaction (paying, getting change or thanking the
bartender for the service). From these 48 customers, 27
customers directed their head downwards and the remain-
ing 21 customers directed the head to other directions, but
away from the bartender. 40 customers directed their head
away from the bartender right after the interaction was fully
completed. From these 40 customers, 22 customers directed
their head downwards. Out of the remaining 19 customers,
14 customers continued to talk to the bartender and 5 cus-
tomers did not direct their head to the bartender while fin-
ishing their interaction, but looked up to the bartender as
they left the bar. The reason for many customers to direct
their head downwards was mainly functional, because they
needed to handle money or their drink. However, the bar-
tender can infer from this cue that the interaction is finished.

To summarise this section: we found that head direction is
an important cue to recognise the intention of a human in all
interaction states of an ordering sequence during the inter-
action with a human bartender. We infer from these findings
that head pose estimation is an important cue for a robot
bartender to infer the interaction state of a human user in an
ordering sequence and that head pose estimation should be
an adequate source to automatically recognise these states.

3.2 Visual Head Pose Estimation
In order to recognise the status of interaction of human

customers, the robot needs to estimate their head poses from
visual input. From the above results of our human-human
study, we can expect that head pose estimation will supply
the information necessary to follow the state of interaction.

Our visual head pose estimation algorithm is mostly based
on the works by Vatahska, Bennewitz, and Behnke [21].
Their approach for head pose estimation follows two steps:
first, the algorithm detects faces and facial features. Sec-
ond, it processes the positions of the facial features with a
trained neural network to yield the three head pose angles
pitch, yaw, and roll. We chose this approach because it is
simple, yet computationally efficient, robust and sufficiently
accurate for our human-robot interaction scenario.

The face and facial feature detection is based on the well-
known Haar-feature classifier by Viola and Jones [22]. Frontal
and profile faces are handled by separate classifier cascades.
Then, we detect eyes, nose and mouth by appropriate clas-
sifier cascades in the expected regions of interest, assuming
an upright head pose with a roll angle within ±25◦. For
the detection, we used classifiers that are available from the
OpenCV library [2].

Provided that at least one of the four facial features—
eyes, nose and mouth–is detected, we extract their position
and mutual distances, as shown in Figure 3. This informa-
tion vector is normalised and fed into one of 22 three-layer
perceptrons, one for each possible combination of features
and view, frontal or profile. Each artificial neural network
was trained by the annotated Head Pose Image Database [4]
and synthesised images based on the Basel Face Model [15],



Figure 3: Position and distance features used for
head pose estimation. 3D model for rendering taken
from [15].

totalling a number of 6000 training images.
The neural networks were designed with one intermediate

layer of six neurons and the symmetric sigmoid f(x) = (1−
e−x)/(1 + e−x) as an activation function. All input and
output variables were normalised to the range [−0.5; 0.5]; for
input positions and distances, the outer box in Figure 3 is
taken as a reference, with the coordinate origin in the centre.
For training, the RPROP learning algorithm [17] was used
with the adaptation parameters η+ = 1.2 and η− = 0.5.

Table 1: Head pose angular accuracy on test data
sets. All columns show the mean deviation from the
known angle.

Test data set Pitch Yaw Roll

Synthesised images from [15]
Frontal view, all features 8.5◦ 5.4◦ 4.3◦

Frontal view 12.2◦ 14.3◦ 10.5◦

Profile view 11.2◦ 10.9◦ 8.9◦

Labelled images from [4]
Frontal view, all features 12.3◦ 9.1◦ 1.3◦

Frontal view 14.9◦ 16.8◦ 3.8◦

Profile view 14.5◦ 16.7◦ 3.2◦

With the described head pose estimation technique, we
are able to recover the face orientation angles within an un-
certainty of about 15 degrees, as shown in Table 1. When
all features are detected, the accuracy is improved to 10 de-
grees. This accuracy is perfectly within our requirements,
as it allows us to recognise the attention and the state of
interaction of the human guests in our HRI scenario. Please
note that for comparison with the results in [21], our results
in Table 1 also include cases of incompletely detected facial
features and non-synthetic images.

As a result, we are able to estimate head poses of multiple
interaction partners of the JAMES robot. The computer vi-
sion system was implemented on commodity hardware with
GPU acceleration and delivers real-time results at 15–30 fps,
depending on the number of people in the field of view of
the camera. Now that we can robustly estimate head poses,
the next processing step covers the modelling of the inter-
action states in our bar scenario. As we have seen in Sec-
tion 3.1, understanding the meaning of the head pose as a
focus of attention is vital to successful interaction. One way
to automatically recognise the state of interaction of the par-
ticipants is to model the sequence of interaction, which we
describe in the following section.

3.3 Modelling State of Interaction
A common approach to model sequential, statistical pro-

cesses are hidden Markov models (HMM). Sequential pro-
cesses are very common in nature, and sequential data arise
in distinctive fields, such as sound and speech processing,
DNA sequencing or economics. A HMM consists of a set
of hidden states, whose transitions are modelled, and a set
of observable output signals. For our application in socially
appropriate human-robot interaction, the hidden states cor-
respond to the states of interaction with a particular person,
and the output signals correspond to the measured head
poses of that person.

Following the notation by Rabiner [16], an HMM λ con-
sists of n hidden states X, m observation variables Z, an
n×n transition matrix A, and an n×m emission matrix B.
The state transition matrix A contains the probability for
a transition from one hidden state to another within a time
step and therefore models the stationary stochastic process.
The emission matrix B maps the hidden states to the prob-
ability of observed variables. To complete the definition of
an HMM, an initial state probability vector π may be added
to list the initial probability of each hidden state.

Combining all of the above, the joint distribution of a
specific sequence with hidden states X1, X2, . . . , XT and ob-
servable variables Z1, Z2, . . . , ZT over T time steps is then

p(X,Z|λ) = p(X1|π)

[
T∏

t=2

p(Xt|Xt−1, A)

]
︸ ︷︷ ︸

transition

T∏
t=1

p(Zt|Xt, B)︸ ︷︷ ︸
emission

(1)
From Equation 1 one can deduce the probabilities of ob-
servation sequences and hidden state sequences. The set of
model parameters λ = {π,A,B} is therefore sufficient to
describe the HMM.

In addition to this model definition with only discrete
observations, our head pose measurements are both multi-
dimensional and (spatially) continuous. To reflect this, the
simple emission matrix of the above HMM is replaced by a
d-dimensional continuous emission distribution of k multi-
variate Gaussian distributions, forming a continuous multi-
dimensional HMM. For that, we define Zt as a d-dimensional
vector with the emission distribution bj(Zt) for each hidden
state j:

bj(Zt) =

K∑
k=1

cjk · N (Zt|µjk,Σjk) (2)

The emission distribution is parameterised by a mixture of
k Gaussian distributions with D-dimensional mean vectors
µjk and d × d covariance matrices Σjk, which are weighted
by the mixing coefficients cjk. Please note that we constrain
Σ to a diagonal matrix to reduce the number of parame-
ters and avoid over-fitting. Finally, the set of parameters
λ = {π,A, c, µ,Σ} completely governs our continuous mul-
tidimensional HMM.

The two fundamental problems for our Hidden Markov
Model of the states of interaction are model training and
state decoding. For model training, a sufficiently large ob-
servation sequence Z needs to be labelled with the hidden
state sequence X. From this, the optimal HMM λ is solved,
that generates the observation sequence with maximum like-
lihood, which can be achieved by expectation maximization
(EM) [16]. The second problem, state decoding, determines



the most likely sequence X for a given observation sequence
Z and a HMM λ. This can be achieved by the Viterbi algo-
rithm [16], and is part of the on-line recognition component
of our robot setup.

enter
human enters

camera's field of view

start end

idle
human stands at bar
looking at no person

bartender
human directs head

to bartender

guest
human directs head
to other customer

leave
human turns away, 

leaves bar area

object
human directs head

to bar menu

Figure 4: Hidden Markov model of the states of
interaction.

Figure 4 shows the states of interaction and possible
transitions in our hidden Markov model. The model reflects
the state of a single human guest—in the case of multiple
guests, each of them corresponds to a separate model. It
was designed with two thoughts in mind: on the one hand,
it has to distinguish between states that are necessary for
the robot to recognise attention requests, on-going interac-
tions and the closing of interactions. On the other hand, the
number of states should be minimal to ensure an acceptable
recognition performance.

4. EVALUATION
For evaluating our model of interaction states, we col-

lected video recordings of more than 60 typical interactions
with the robot bartender. The interactions included one,
two or three human guests.

As head poses can by nature not be recognised at all times,
we additionally collected torso poses given by a Kinect depth
sensing device. With this, positions of people are even avail-
able when they are not facing the robot and we avoid the
otherwise likely case of confusing people. To complete our
set of observed variables, we added two fuzzy values f1 and
f2 that respond to other guests being of the field-of-view of
a person. The first fuzzy value f1 ranges from 1, when an-
other guest is located directly on the line-of-sight, down to 0,
when no other guests are in the field-of-view. The second
fuzzy value f2 likewise responds to other people being in
the field-of-view, but furthermore decreases with distance.
Finally, our set of observed variables is a vector of d = 14
dimensions for each person, 6 for head pose, 6 for torso pose,
and 2 fuzzy values for other people being in the field-of-view.

For model training and testing, all recorded data were
manually labelled following the state definitions in Figure 4.
Two thirds of the data were used for training, one third for
testing.

After systematic exploration of possible model parame-
ters, we chose an inner state count of s = 5 inner states
for each state in Figure 4 and an emission distribution of
k = 6 Gaussians with diagonal covariance matrices for each
inner state. With this model, we achieved 89.90% correctly
recognised states of interaction with 8.21% false insertions,
yielding an accuracy of 81.59% on the training set.

0 50 100 150 200 250 300 350 400

Labelled Recognised

Time/s

enter

idle

bartender

object

guest

leave

0 50 100 150 200 250 300 350 400 450

Labelled Recognised

Time [s]

enter

idle

bartender

object

guest

leave

Figure 5: Sample recognition results in comparison
to labelled states over time. Top view shows a single
participant scenario, bottom view shows a partici-
pant within a group.

Figure 5 shows an exemplary comparison of recognised
and labelled states of interaction in the testing set over
time. The observation from this comparison is that, even
though states are not always correctly recognised, labelled
and recognised state change usually coincide in time, a sys-
tematic delay is not observed.

A complete overview on the testing results are shown in
Table 2: All in all, 78.3% of the states of interaction could
correctly be recognised. Even though we still observe a sig-
nificant rate of 21.1% false insertions, the robot is able to
identify the most important state changes in the interac-
tion with human guests: 83.8% of all interactions with the
bartender are detected, and together with 94.7% recognised
idle states and 73.0% detected interactions among guests,
the robot gains sufficient knowledge when to handle an in-
teraction request or when to close an interaction.

5. CONCLUSIONS
This work yielded two main contributions: first, we took

video recordings of human-human interactions in several
bars to empirically research the use of head pose in an every-
day situation. In the recorded sequences, human customers
order drinks from a human bartender. The analysis of this
data showed that humans follow a certain predefined se-
quence of interaction states when they order drinks: first,
they request the bartender’s attention; second, they place
their order; third, they close the interaction. More impor-
tantly, we found that head pose is an important part of
nonverbal communication that humans use in all of these
states of interaction to express their intentions, first to en-
sure to have the attention of the bartender and to keep the
interaction alive during the ordering process, then to signal
that the interaction has come to an end.

The second contribution of this publication is that we used
the findings from the human-human interaction recordings
to design and implement a model of interaction states for



Table 2: Results and confusion matrix of the test
data set.

Correctness 78.3% H/N
Accuracy 57.2% (H–I)/N
Correctly recognised states 141 H
Deletions 16 D
Substitutions 23 S
Insertions 38 I
Number of states 180 N

Recognised
states

Labelled states

e i b o g l D %Corr.
enter 20 0 0 0 0 0 0 100.0
idle 1 36 1 0 0 0 2 94.7
bartender 0 4 31 1 0 1 8 83.8
object 0 4 1 6 0 0 1 54.5
guest 3 7 0 0 27 0 5 73.0
leave 0 0 0 0 0 21 0 100.0
I 4 6 12 0 10 6

a robot bartender. For the modelling, we used a hidden
Markov model (HMM), which was trained with information
from an automatic head pose estimation algorithm and ad-
ditional body pose information. We proved in an evaluation,
that the robot can recognise interaction states correctly in
78.3% of all test cases for all interaction states. More specif-
ically, we achieved recognition rates of 83.8% for the cru-
cial interaction state “attention to bartender” and 73.0% for
“attention to other guest”, allowing the robot to perform a
socially appropriate interaction with multiple human guests.
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