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Abstract A robot agent designed to engage in real-world human-robot joint action
must be able to understand the social states of the human users it interacts with in
order to behave appropriately. In particular, in a dynamic public space, a crucial task
for the robot is to determine the needs and intentions of all of the people in the scene,
so that it only interacts with people who intend to interact with it.

We address the task of estimating the engagement state of customers for a robot
bartender based on the data from audiovisual sensors. We begin with an offline ex-
periment using Hidden Markov Models, confirming that the sensor data contains the
information necessary to estimate user state. We then present two strategies for on-
line state estimation: a rule-based classifier based on observed human behaviour in
real bars, and a set of supervised classifiers trained on a labelled corpus. These strate-
gies are compared in offline cross-validation, in an online user study, and through
validation against a separate test corpus. These studies show that while the trained
classifiers are best in a cross-validation setting, the rule-based classifier performs
best with novel data; however, all classifiers also change their estimate too frequently
for practical use. To address this issue, we present a final classifier based on Con-
ditional Random Fields: this model has comparable performance on the test data,
with increased stability. In summary, though, the rule-based classifier shows com-
petitive performance with the trained classifiers, suggesting that for this task, such
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a simple model could actually be a preferred option, providing useful online perfor-
mance while avoiding the implementation and data-scarcity issues involved in using
machine learning for this task.

1 Introduction

Robots will become more and more integrated into daily life over the next decades,
with the expectation that the market for service robots will increase greatly over the
next 20 years (International Federation of Robotics 2015). Everyday interactions,
especially in public spaces, differ in several ways from the companion-style interac-
tions that have been traditionally considered in social robotics (e.g., Breazeal 2005;
Dautenhahn 2007; Johnson et al 2014). First, interactions in public spaces are often
short-term, dynamic, multimodal, and multi-party. Second, in a public setting, it is
not enough for a robot simply to achieve its task-based goals; instead, it must also
be able to satisfy the social goals and obligations that arise through interactions with
people in real-world settings. Therefore, we argue that task-based, social interaction
in a public space can be seen as an instance of multimodal joint action (Sebanz et al
2006; Iqbal et al 2015).

In this work, we consider the socially aware robot bartender shown in Figure 1,
which has been developed as part of the JAMES project.1 The JAMES robot bartender
supports interactions like the one shown in the figure, in which two customers enter
the bar area and each attempt to order a drink from the bartender. Note that when the
second customer appears while the bartender is engaged with the first customer, the
bartender reacts by telling the second customer to wait, finishing the transaction with
the first customer, and then serving the second customer. In the bartending scenario,
the first step in ensuring successful joint action between robot and customer is to
correctly classify the engagement of all potential customers in the scene, both at the
start of the interaction and as it progresses: that is, in order to carry out its interactive
task, the bartender must be able to understand the social scene in front of it to ensure
that it only interacts with potential customers who are actually seeking to engage with
it. In this paper, we present the collected findings from the engagement classification
work in the context of the JAMES project.

We make use of rule-based and data-driven methods for estimating the desired
engagement of customers of the robot bartender. We begin with an off-line experi-
ment for social signal recognition using Hidden Markov models. We then compare
two classification strategies in the context of the full robot bartender system: a sim-
ple, hand-coded, rule-based classifier based on the observation of human behaviour in
real bars, and a range of supervised-learning classifiers trained on an annotated corpus
based on the sensor data gathered from an initial human-robot experiment. We first
compare the two classification strategies through offline cross-validation; then we in-
tegrate the rule-based classifier and the top-performing trained classifier into the full
robot bartender system and compare them experimentally through interactions with
real human users. Because the ground-truth engagement-seeking behaviour of the

1 http://www.james-project.eu

http://www.james-project.eu
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A customer attracts the bartender’s attention
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer attracts the bartender’s attention
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Fig. 1: The JAMES socially aware robot bartender

users in that experimental study is not available, making the practical implications
difficult to interpret, we therefore also test the performance of all of the classifiers
(rule-based and trained) on a newly-recorded, fully annotated, more balanced test
corpus. Finally, we examine the impact of incorporating temporal features into the
classifier state by using an alternative classification strategy—Conditional Random
Fields—which is particularly suited to this sequence classification task.

2 Related work

Gaze contact is crucial for establishing social rapport (Andrist et al 2014), and a
number of researchers have addressed the task of estimating engagement based on
gaze and other signals. Bohus and Horvitz (2009a,b) pioneered the use of data-driven
methods for this task: they trained models designed to predict user engagement based
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on information from face tracking, pose estimation, person tracking, group infer-
ence, along with recognised speech and touch-screen events. After training, their
model was able to predict intended engagement 3–4 seconds in advance, with a false-
positive rate of under 3%. A number of more recent systems have also used machine
learning to address this task. For example, Li et al (2012) estimated the attentional
state of users of a robot in a public space, combining person tracking, facial expres-
sion recognition, and speaking recognition; the classifier performed well in informal
real-world experiments. Castellano et al (2012) trained a range of classifiers on la-
belled data extracted from the logs of children interacting with a chess-playing robot,
where the label indicated either high engagement or low engagement. They found that
a combination of game context-based and turn-based features could be used to pre-
dict user level engagement with an overall accuracy of approximately 80%. McColl
and Nejat (2012) automatically classified the social accessibility of people interacting
with their robot based on their body pose, with four possible levels of accessibility:
the levels estimated by their classifier agreed 86% of the time with those of an expert
coder. MacHardy et al (2012) classified the engagement states of audience members
for an online lecture based on information from facial feature detectors; the over-
all performance was around 72% on this binary classification task. Hernandez et al
(2014) used wearable electrodermal activity sensors to detect the engagement of chil-
dren during social interactions with adults. Their goal was to automatically predict
which children are difficult to engage with in social interactions. Leite et al (2015)
compared models for detecting disengagement. They found that models trained on
data from group interactions between several humans and two social robots scale
better when applied to single user interactions than the other way around. Further
related problems are the prediction of responses in dialogues with embodied agents
(de Kok 2013) and turn-taking in general (Thórisson 2002).

Our work is also closely related to automatic human activity recognition. Ke et al
(2013) survey the use of human activity recognition in single person activity recogni-
tion, multiple people interaction and crowd behaviour, and abnormal activity recog-
nition. Aggarwal and Xia (2014) give details on human activity recognition with 3D
data, similar to the data we are using in our approach. Lara and Labrador (2013) give
an overview of human activity recognition using wearable sensors. Brand et al (1997)
used coupled hidden Markov models for robust visual recognition of human actions.
Torta et al (2012) addressed the dual problem of how a robot should attract a hu-
man’s attention, and found that speech and body language were the most successful,
while gaze behaviour was useful only in cases where the human was already attend-
ing to the robot. Figueroa-Angulo et al (2015) trained a compound hidden Markov
model to recognize human activity with RGB-D skeleton data of humans for a ser-
vice robot. For the related problem of face-to-face conversation, conversation esti-
mation has been demonstrated using visual tracking alone (Otsuka et al 2005, 2006;
Otsuka 2011) or combined RGB-D sensing to analysing and generating multimodal
behaviour (Mihoub et al 2013). Mihoub et al.’s approach for social behaviour mod-
elling and generation is based on incremental discrete hidden Markov models. It can
be used to recognise the most likely sequence of cognitive states of a speaker, given
his or her multimodal activity, and to predict the most likely sequence of the follow-
ing activities. Finally, Chen et al (2015) conducted experiments in a “drinking at a
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Fig. 2: Software architecture of the JAMES robot bartender

bar” scenario. In contrast to our user engagement classification, their intention recog-
nition system with two-layer fuzzy support vector regression identifies most likely
orders based on age, gender, nationality, and detected emotions.

Most previous work in engagement classification has approached it as a machine
learning problem. The related work shows that machine learning works well for en-
gagement classification for several different interaction settings and using various
machine learning algorithms. In comparison to this previous work, we have a more
holistic approach for studying error classification. In particular, one of our goals is to
compare a simpler classification system with hand-written rules to a machine-learned
approach. We have also tested a large variety of different machine learning algorithms
on the same data set and interaction scenario. Finally, we tested our rule-based and
machine-learned approaches not only in an offline evaluation, as most previous work
did, but also in an online human-robot interaction user study with naı̈ve participants.

3 Social signal processing in the JAMES robot bartender

The JAMES robot bartender incorporates a large number of hardware and software
components; Figure 2 illustrates the software architecture. In summary, the robot
senses events in its surroundings through the speech recogniser and visual proces-
sor modules, while the parser component processes the output from speech recog-
nition. The state manager takes the output from visual processing and parsing and
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transforms it into symbolic representations for the interaction manager module. The
interaction manager then selects high-level actions for the robot, which are processed
by the output planner for execution as concrete actions by the talking-head con-
troller and the robot motion planner. Full technical details of the system can be
found in (Foster et al 2012; Giuliani et al 2013).

The work presented in this paper takes place largely in the context of the state
manager (SM), whose primary role is to turn the continuous stream of sensor mes-
sages produced by the low-level input-processing components into a discrete rep-
resentation of the world, the robot, and all entities in the scene, integrating social,
interaction-based, and task-based properties. Petrick and Foster (2013) give a formal
description of the inputs and outputs of the SM. In summary, the input consists of
a set of timestamped sensor readings, while the output is a set of first-order predi-
cates denoting properties of all agents in the scene, their locations, torso orientations,
engagement states, and drink requests if they have made one. In addition to storing
and discretising all the low-level sensor information, the SM also infers additional
relations that are not directly reported by the sensors. For example, it fuses informa-
tion from vision and speech to determine which user should be assigned a recognised
spoken contribution, and estimates which customers are in a group. Most importantly
in the current scenario—where one of the main tasks is to manage the engagement of
multiple simultaneous customers, as in Figure 1—the SM also informs the rest of the
system every time a customer is seeking to engage with the bartender.

The low-level sensor data that is relevant for classifying intended user engage-
ment is available on two input channels. The visual processor (Baltzakis et al 2012;
Pateraki et al 2013) tracks the location, facial expressions, gaze behaviour, and body
language of all people in the scene in real time, using a set of visual sensors including
two calibrated stereo cameras and a Microsoft Kinect depth sensor. The data from the
vision system is published as frame-by-frame updates approximately every 200ms.
The other primary input modality in the system is linguistic (Petrick et al 2012),
combining a speech recogniser with a natural-language parser to create symbolic
representations of the speech from all users. For speech recognition, we use the Mi-
crosoft Speech API together with a Kinect directional microphone array; incremental
hypotheses are published constantly, and recognised speech with a confidence above
a defined threshold is parsed using a grammar implemented in OpenCCG (White
2006) to extract the syntactic and semantic information.

Concretely, for these experiments in user state classification, we make use of the
following data from the input sensors:

– The (x,y,z) coordinates of each customer’s head, left hand, and right hand as
reported by the vision system (Figure 3);

– The angle of each customer’s torso in degrees, where 0◦ indicates that the cus-
tomer is facing directly towards the counter;

– The customer’s three-dimensional head pose (roll, pitch, yaw); and
– An estimate of whether each customer is currently speaking, derived from the

estimated source angle of each speech hypothesis along with the location infor-
mation from vision.
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Fig. 3: Output of face and hand tracking (image from (Foster et al 2012))

4 Experiment 1: Offline state classification with Hidden Markov Models

As an initial experiment to test the utility of the sensor data for this task, we trained
a supervised Hidden Markov Model (HMM) to recognize a set of communicative
states based on the vision data: that is, using the customers’ body and hand coordi-
nates, body angles, and head poses with position (xyz coordinates) and orientation
(roll, pitch, yaw). To create the training data, a total of 200 interactions were enacted
by five human customers, with up to three customers in one interaction. In this exper-
iment, there was no feedback from the robot system. For later training and off-line
evaluation, we recorded the robot’s RGB and depth camera views. Customers’ in-
teractions contained a total of eight different states: Entering or leaving the scene, an
idle state, attention to the robot bartender, attention to a written menu, interaction with
another customer, and visible “cheers” gestures and drinking actions. We labelled all
data by hand, resulting in a total of 1720 interaction states, which we divided into a
training set of 1010 states, a cross-validation set for model optimization of 319 states,
and a testing set of 391 states. All participants appeared in both training and test data
sets.

As components of the feature vector, we selected body position, body orientation,
head orientation (represented both as a normal vector and as pitch and yaw angles),
hand positions, and two horizontal and frontal distance features to other customers.
The fuzzy distance features were computed from the set of body positions of all cus-
tomers and responded to whether another customer was located in front of or next
to an actor. We derived this collection of features through systematic, manual evalua-
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Table 1: Results of the HMM social state recognition experiment

Recognized Labelled interaction states
interaction
states b o g c d e i l D %Corr.

bartender 52 1 0 1 1 2 0 0 6 91.2
object 0 24 0 0 0 0 1 0 2 96.0
guest 0 0 36 0 0 0 1 1 7 94.7
cheers 2 0 0 12 1 1 1 1 6 66.7
drink 0 0 1 0 35 1 1 0 6 92.1
enter 0 0 0 0 0 30 0 0 1 100.0
idle 0 1 1 1 0 1 105 0 17 96.3
leave 0 0 0 0 0 0 0 30 1 100.0

I 8 10 5 7 4 5 18 8

Correctness 82.9% H/N
Accuracy 66.2% (H–I)/N

Correctly recognized states 324 H
Deletions 46 D
Substitutions 21 S
Insertions 65 I

Number of interaction states 391 N

tion of the available visual input data and its different representations while observing
the correctness and accuracy on the cross-validation set. When experimenting with
different features, we observed that hand positions were not significant to detect the
interaction states “bartender” or “guest” (Gaschler et al 2012a) (i.e., the states rele-
vant to user engagement), but were necessary for detecting the “cheers” and “drink”
gestures.

We then modelled the behaviour and state of interaction of each costumer by a
separate, continuous-valued multi-dimensional Hidden Markov Model. As an emis-
sion model, full covariance matrices showed slightly more accurate than standard,
diagonal variance, which we compared on the cross-validation data set. To prepare
training of the model, we measured transition frequencies between states in the train-
ing data to bootstrap the hidden state graph and its transition matrices. For the hidden
state graph, we defined a linear graph of three hidden states (or, inner states) within
each interaction state (or, outer state), with transitions between interaction states if
labelled transition frequencies were higher than 5%.

The results of this off-line evaluation are listed in Table 1. The confusion matrix
indicates substitutions, false insertions, and deletions of states, and therefore shows
the editing distance between the recognized and labelled sequence of states; it does
not depend on time frames. In general, we could correctly recognize 82.9% of all
states, and the accuracy of the recognition was 66.2%.

We can draw two main conclusions from this stand-alone study using HMMs for
state recognition. First, we have confirmed that the attributes available from the vi-
sual processor do, in principle, support the recognition of user social states. Secondly,
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this study agrees with the results of related human-human studies (Huth et al 2012;
Loth et al 2013, 2015) which suggest that the combined features of head pose and
torso orientation are adequate for classifying user engagement in this bartender con-
text. In our HMM experiment, hand positions were not significant for detecting the
“bartender”, “idle”, or “guest” interaction states, which are the states relevant to the
overall property of user engagement.

5 Experiment 2: Strategies for engagement detection

The preceding section described a stand-alone experiment which tested the perfor-
mance of HMMs at estimating user states based on a small amount of high-quality
data provided by trained actors; the results of that study confirm that the available sen-
sor data is useful for determining user states. We now turn our attention to the task
of online detection of user engagement, which—as mentioned previously—is funda-
mental to interactions with the full robot bartender (e.g., Figure 1). For this task, we
will explore two classification strategies: a rule-based classifier that uses a simple,
hand-crafted rule derived from the observation of natural interactions in a real bar,
and a set of trained classifiers based on an annotated corpus of actual human-robot
interactions.

The rule-based engagement classifier relies on the signals observed in real bar
customers who signalled that they wanted to engage with the bartender (Huth et al
2012): (1) standing close to the bar, and (2) turning to look at the bartender. These
signals were extremely common in the natural data; and, although they seem very
simple, in a follow-up classification experiment based on still images and videos
drawn from the natural data, the two signals also proved both necessary and sufficient
for detecting intended customer engagement (Loth et al 2013). Also, when a different
group of human participants were asked to play the role of the human bartender based
on a “Ghost-in-the-Machine” paradigm (where the participants had access only to the
data detected by the robot sensors), they also paid attention primarily to the signals
of position and pose when determining whether to initiate an interaction (Loth et al
2015).

Based on the details of the bartender environment, we therefore formalised these
two signals into a rule-based classifier that defined a user to be seeking engagement
exactly when (1) their head was less than 30cm from the bar, and (2) they were
facing approximately forwards (absolute torso angle under 10◦)—note that since the
bartender robot (Figure 1) is very large compared to the bar, facing forwards is used
as a proxy for looking towards the bartender. In Experiment 1, we also included hand
positions in the feature vector; however, that study found that signal to be relevant
only for classifying gestures that did not relate to user engagement; the latter can be
reliably detected without hand poses (Gaschler et al 2012a).

The trained classifiers, on the other hand, make use of a multimodal corpus de-
rived from the system logs and annotated video recordings from the first user study
of the robot bartender (Foster et al 2012). In particular, the engagement state of each
customer visible in the scene was annotated by an expert with one of three (mu-
tually exclusive) levels: NotSeekingEngagement, SeekingEngagement, and Engaged.
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Table 2: Classifiers considered

CVR Classifies using regression: the target class is binarised,
and one regression model is built for each class value (Frank et al 1998).

IB1 A nearest-neighbour classifier that uses normalised Euclidean
distance to find the closest training instance (Aha and Kibler 1991).

J48 Classifies instances using a pruned C4.5 decision tree (Quinlan 1993).
JRip Implements the RIPPER propositional rule learner (Cohen 1995).
LibSVM Generates a Support Vector Machine using LIBSVM (Chang and Lin 2011)
Logistic Multinomial logistic regression with a ridge estimator

(le Cessie and van Houwelingen 1992).
NaiveBayes A Naı̈ve Bayes classifier using estimator classes (John and Langley 1995).
ZeroR Baseline classifier; always predicts the most frequent value.

For the current classification task—where we aim to detect users who have not yet
engaged with the system but are seeking to do so—the Engaged state is not relevant,
so the corpus was based on the time spans annotated with one of the other labels. In
total, the corpus consisted of 5090 instances: each instance corresponded to a single
frame from the vision system, and contained the low-level sensor information for a
single customer along with the annotated engagement label. 3972 instances were in
the class NotSeekingEngagement, while 1118 were labelled as SeekingEngagement.

For this initial experiment in trained classification, we used the Weka data min-
ing toolkit (Hall et al 2009) to train a range of supervised-learning classifiers on this
corpus, using a set of classifiers designed to provide good coverage of different clas-
sification styles. To ensure that we selected a wide range of classifiers, we chose the
classifier types based on those listed in the Weka primer (Weka n.d.); The full list
of classifiers is given in Table 2. All classifiers were treated as “black boxes”, in all
cases using the default configuration as provided by Weka version 3.6.8. For training
and testing, we treated the corpus as a set of 5090 separate instances; that is, each
instance (i.e., frame) was separately classified.

Before integrating any engagement classifier into the system for an end-to-end
evaluation, we first tested the classifiers in a set of offline experiments to compare the
performance of the trained classifiers with each other and with that of the rule-based
classifier. This study provides an initial indication of which classification strategies
are and which are not suitable for the type of data included in the training corpus, and
also gives an indication of the performance of the rule-based classifier on the same
data.

5.1 Cross-validation

We first compared the performance of all of the classifiers through 5-fold cross-
validation on the 5090-item training corpus. For each classifier, we computed the
following measures: the overall classification accuracy, the area under the ROC curve
(AUC), along with the weighted precision, recall, and F measure. Note that the base-
line accuracy score for this binary classification task is the size of the larger class
(NotSeekingEngagement): 3972/5090 = 0.78. The results of this evaluation are pre-
sented in Table 3, sorted by accuracy; the overall performance of the hand-coded
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Table 3: Cross-validation results, grouped by accuracy

Classifier Accuracy AUC Precision Recall F

IB1 0.954 0.926 0.954 0.954 0.954

J48 0.928 0.921 0.928 0.928 0.928
CVR 0.912 0.955 0.910 0.912 0.911
JRip 0.910 0.877 0.908 0.910 0.909

LibSVM 0.790 0.521 0.830 0.790 0.706
Logistic 0.781 0.738 0.730 0.781 0.711
ZeroR 0.780 0.500 0.609 0.780 0.684

NaiveBayes 0.665 0.654 0.728 0.665 0.687
Hand-coded rule 0.655 na 0.635 0.654 0.644

rule on the full training corpus is also included. The groupings in Table 3 reflect dif-
ferences among the accuracy scores that were significant at the p < 0.01 level on
a paired T test based on 10 independent cross-validation runs. In other words, the
IB1 classifier (nearest-neighbour) had the highest performance on this measure; J48
(decision trees), CVR (regression) and JRip (propositional rule learner) were statisti-
cally indistinguishable from each other; LibSVM (support vector machines), Logistic
(logistic regression), and ZeroR (baseline—chooses most frequent class) were again
indistinguishable (these classifiers generally labelled all instances as NotSeekingEn-
gagement); while NaiveBayes (naı̈ve Bayes) and the hand-coded rule (distance + ori-
entation) had the lowest overall accuracy by a significant margin. Figure 4 shows the
ROC curves for all classifiers based on the SeekingEngagement class: as expected,
the curves for all of the high-performing classifiers are close to optimal, while those
for the other classifiers are closer to the chance performance of the baseline ZeroR
classifier.

5.2 Attribute selection

The above cross-validation results made use of the full set of sensor attributes in-
cluded in the corpus; however, it is likely that not all of the sensor data is equally
informative for the classification task. To get a better assessment of which sensor data
was most relevant, we carried out two forms of attribute selection. We first determined
the sensor attributes that were the most informative for each of the individual clas-
sifiers, using a wrapper method (Kohavi and John 1997) to explore the relationship
between the algorithm and the training data. We then analysed the corpus as a whole
using Correlation-Based Feature Selection (CBF) (Hall 2000), a general-purpose se-
lection method known to have good overall performance (Hall and Holmes 2003).

The results of this attribute selection process are shown in Table 4. The main
body of the table indicates with a bullet (•) the attributes that were determined to be
most informative for each of the classifiers; for reference, the last row shows the two
features that were used by the rule-based classifier (z head position and body orienta-
tion). The final Acc column shows the cross-validation accuracy of a classifier making
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Fig. 4: ROC curves for SeekingEngagement class

Table 4: Output of attribute selection

Head HandL HandR Ori Spk Acc
x y z x y z x y z

IB1 • • • • • • • • 0.963
J48 • • • • • • • • • 0.932

CVR • • • • • • • • • 0.926
JRip • • • • • • • • 0.921

LibSVM • • • 0.830
Logistic 0.780

ZeroR 0.780
NaiveBayes • • • • 0.786

Hand-coded rule • • 0.655

CBF • • • • • •

use only of the selected attributes. As can be seen, most of the high-performing clas-
sifiers made use of the full 3D location of the customer’s head, along with the 3D
location of the hands and the “speaking” flag. The accuracy of most classifiers was
very slightly better with the classifier-specific attribute subset when compared to the
results from Table 3, but in no cases was this improvement statistically significant.
The bottom row of the table shows the attributes that were found to be most informa-
tive by the CBF selector, which were similar to those used by the high-performing
classifiers: namely, the full 3D position of the customer’s head, along with some of
the hand coordinates. The selected attributes correspond very well with the results of
the HMM-based study from the previous section.

It is notable that body orientation—which was one of the two main engagement-
seeking signals found in the human-human data, and which was found to be necessary
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for making offline engagement judgements based on that same data—was not deter-
mined to be informative by any of the attribute selectors. This is most likely due to
the performance of the initial vision system that was used to create the corpus data,
which turned out to have difficulty in detecting body orientation reliably, making this
attribute unreliable for engagement classification. The unreliability of this signal in
the corpus data likely also affected the cross-validation performance of the hand-
coded rule (which used both factors found to be relevant to engagement based on the
real-world study), which had lower accuracy even than the baseline ZeroR classifier.
Also, the right hand was generally found to be more informative than the left: this is
probably because, assuming that most customers were right-handed, they would have
used this hand more often, thus providing more useful vision data.

6 Experiment 3: Online comparison of rule-based and trained classifiers

The offline results presented in the preceding section are promising: in cross-validation
against real sensor data, the top-performing trained classifier (IB1) correctly labelled
over 95% of the video-frame instances. However, this study was based on frame-by-
frame accuracy; and as Bohus and Horvitz (2009b) point out, for this sort of classifier,
a better run-time evaluation is one that measures the errors per person, not per frame.

As a step towards such an evaluation, we therefore integrated the top-performing
trained classifier into the robot bartender’s state manager (SM) and tested its per-
formance against that of the rule-based classifier through an online evaluation, with
human participants playing the role of customers for the robot bartender. This study
used the drink-ordering scenario illustrated in Figure 1: two customers approached
the bar together and attempted to engage with the bartender, and—if successful—
each ordered a drink. The bartender was static until approached by a customer, and
did not engage in any interaction other than that required for the target scenario. As
soon as the robot detected a customer intending to engage with it, it would acknowl-
edge their presence by turning its head towards them and speaking: either a greeting
(if they were the first customer) or a request to wait (if they were the second)—
Figure 1 contains an example of both behaviours.

For this experiment, in half of the trials, the SM used the rule-based engagement
classifier, while for the rest, it instead made use of the IB1 classifier trained on the
complete 5090-instance corpus used in the experiment in the preceding section.

6.1 Participants

41 participants (29 male), drawn from university departments outside the German
robotics group involved in developing the bartender, took part in this experiment.
The mean age of the participants was 27.8 (range 16–50), and their mean self-rating
of experience with human-robot interaction systems was 2.51 on a scale of 1–5. Par-
ticipants were given the choice of carrying out the experiment in German or English;
27 chose to use German, while 14 chose English.
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6.2 Scenario

The study took place in a lab, with lighting and background noise controlled as far
as possible. In each trial, the participant approached the bartender together with a
confederate, with both customers seeking to engage with the bartender and order a
drink (as in Figure 1). Each participant was given a list of the possible drinks that
could be ordered (Coke or lemonade), but was not given any further instructions.
The robot was static until approached by a customer, and the confederate did not
attempt to speak at the same time as the participant. Each participant carried out
two interactions, with the order and selection of classifiers counter-balanced across
participants.

6.3 Dependent measures

To evaluate the performance of the classifiers, we used the system logs to compute a
number of objective measures which specifically address the interactive performance
of the two engagement classifiers. Note that the ground-truth data about the partici-
pants’ actual behaviour is not available; however, based on the scenario (Figure 1), it
is reasonably safe to assume that the majority of customers were seeking to engage
with the bartender as soon as they appeared in the scene, and that the participants be-
haved similarly in the two classifier conditions. We collected the following objective
measures:

– Detection rate. How many of the customers detected in the scene were classified
as seeking to engage. Under the above assumptions, this measure assesses the
accuracy of the two classifiers.

– Initial detection time. The average delay between a customer’s initial appearance
in the visual scene (i.e., the point at which the vision system first noticed them)
and the time that they were considered to be seeking engagement. Again, under
the assumption that all participants behaved similarly, this measure assesses the
relative responsiveness of the two engagement classifiers.

– System response time. The average delay between a customer’s initial appear-
ance in the visual scene and the time that the system generated a response to that
customer. Since the system would only respond to customers that were detected
as seeking engagement, this is a secondary measure of classifier responsiveness,
but one that is more likely to have been noticed by the participants.

– Drink serving time. The average delay between a customer’s initial appearance
in the visual scene and the time that the system successfully served them a drink.
Since serving a drink ultimately depends on successful engagement between the
customer and the bartender, this is an even more indirect measure of responsive-
ness.

– Number of engagement changes. The average number of times that the classifier
changed its estimate of a user’s engagement-seeking state over the course of an
entire experiment run. In the experimental scenario, only the initial detection af-
fected the system behaviour: as soon as a customer was determined to be seeking
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engagement, the system would engage with them and the interaction would con-
tinue. However, the engagement classifier remained active throughout a trial, so
this measure tracks the performance over time. Although the actual behaviour of
the experimental participants is not known, we assume that it was similar across
the two groups, so any difference on this measure indicates a difference between
the classifiers.

The participants also completed a subjective usability questionnaire following the
experiment, including questions about perceived success, ease and naturalness of the
interaction, and overall satisfaction. In general, the participants gave the system rea-
sonably high scores on perceived success, interaction ease, and overall quality, with
somewhat lower scores for naturalness. However, the choice of engagement classifier
made no significant difference to any of the responses to this questionnaire, so we do
not discuss those results further here—see Foster et al (2013) for more details.

6.4 Results

A total of 81 interactions were recorded in this study. However, due to technical issues
with the system, only 58 interactions could be analysed, involving data from 37 of the
41 subjects: 26 interactions using the rule-based classifier, and 32 using the trained
IB1 classifier. All results below are based on those 58 interactions.

Table 5 summarises the objective results, divided by the classifier type. Overall,
the detection rate was very high, with 98% of all customers determined to be seek-
ing engagement, generally within 4–5 seconds (and, in many cases, in under one
second). The robot acknowledged a customer on average about 6–7 seconds after
they first became visible, and a customer received a drink about a minute after their
initial appearance—note that this last number includes the full time for the spoken
interaction, as well as the 20 seconds normally taken by the robot arm to physically
grasp and hand over the drink. Over the course of an entire interaction, a customer’s
estimated engagement changed an average of 15 times.

Each study participant took part in two interactions; however, as mentioned above,
due to technical issues we could not analyse the full paired data. Instead, we analysed
the data using a linear mixed model (Baayen et al 2008; West et al 2006), treating
the participant identifier as a random factor, with the classification strategy and all
demographic features included as fixed factors. This analysis found that the effect
of the classification strategy on the number of changes in estimated engagement was
significant at the p < 0.05 level; however, while the numbers in Table 5 suggest that
the trained classifier was somewhat more responsive, none of those differences were
found to be statistically significant.

Several demographic factors also affected the objective results: the participants
who carried out the experiment in German took significantly longer to receive their
drinks than did those who interacted in English (48.1 vs. 62.0 seconds; p < 0.05),
while the classifiers changed their estimate of the female participants’ engagement
state significantly more often over the course of an interaction (21.1 vs. 13.3 times;
also p < 0.05).
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Table 5: Objective results (significant difference highlighted)

Measure Rule (sd) Trained (sd)

Detection rate 0.98 (0.10) 0.98 (0.09)
Time to first detection [s] 5.4 (7.9) 4.0 (9.7)
Time to system response [s] 7.0 (7.9) 6.4 (10.4)
Time to drink served [s] 62.2 (22.2) 53.7 (14.0)
Num. engagement changes 12.0 (10.2) 17.6 (7.6)

6.5 Discussion

The objective results of this study indicate that the system was generally successful
both at detecting customers who wanted to engage with it and at serving their drinks:
despite the minimal instructions given to the participants, the objective success rate
was very high. The choice between the two classification strategies had one main ob-
jective effect: the trained classifier changed its estimate of a customer’s engagement
state more frequently than did the rule-based classifier; in other words, the rule-based
classifier was more stable over the course of an interaction than the trained classifier.
While the data in Table 5 suggests that the trained classifier may have been more re-
sponsive than the rule-based classifier (i.e., with a faster response time), no significant
difference was found in these results.

The demographics had several effects on the results. First, the participants who
used German took significantly longer to receive their drink, and also gave lower
overall ratings to the system. We suspect that this was likely due to the decreased
performance of the Kinect German language model, which was added to the Kinect
Speech API much later than the English recognition. The system only responds to
speech utterances with a confidence above a threshold—and on average, nearly twice
as many attempted user turns were discarded due to low confidence for the German
participants (4.1 per interaction) as for the English participants (2.2). Also, both clas-
sifiers’ estimate of customer engagement changed more often over the course of a
trial for the female participants than for the male participants: we hypothesise that
this may be due to the vision system having been trained primarily on images of male
customers.

Note that all of the dependent measures in this study are based only on the data
from the log files, along with some underlying assumptions about user behaviour
based on the scenario given to the participants (Figure 1): namely, we assume that
all customers were seeking to engage with the bartender from the moment that they
appeared, and that the behaviour of the participants in the two conditions did not
differ over the course of an interaction. The difference in classifier stability between
male and female participants suggests that this assumption may not hold in practice;
however, to assess the true performance of the classifiers, we require ground-truth
data as to the actual engagement-seeking behaviour of the customers in the scene.
Such ground-truth information would also allow us to analyse the impact of the de-
mographic factors more directly.
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7 Experiment 4: Evaluation with novel test data

In the user evaluation summarised above, the ground truth about the customers’ ac-
tual engagement-seeking behaviour was not available. This makes the results of the
user study difficult to interpret, as it is impossible to know which of the classifiers
actually estimated customer engagement more accurately in practice. Note that, due
to the study design (in which all subjects were instructed to engage, and which was
carried out in parallel with the end-to-end system evaluation described by Keizer et al
(2013)), even if the recordings were annotated, there would be very few true negative
examples in any case.

Instead, we therefore carried out a new evaluation of the engagement classifiers,
making use of a specially-recorded test corpus addressing the weaknesses of the pre-
vious study: namely, the engagement-seeking behaviour of all customers is fully an-
notated, and the data includes a much more balanced set of positive and negative
instances.

The test data is based on six videos, each showing a single customer in front of the
bar, as in the sample images in Figure 5. Two different customers were recorded: one
who was involved in the human-robot interactions making up the original training
corpus, and one who was not. The customers were instructed to move around in
front of the bartender; for half of the videos, they were instructed to engage with the
bartender, while for the others, they were told to move around but not to engage; the
details of how to behave were left up to the subjects.

After the recordings were made, the ELAN annotation tool (Wittenburg et al
2006) was used to annotate the videos, using the same labels as the original training
data: the customer’s engagement state was labelled as either NotSeekingEngagement
(Figure 5a) or SeekingEngagement (Figure 5b). The video annotations were synchro-
nised with the frame-by-frame information produced by the JAMES vision system,
and a corpus instance was then created from the relevant data in each vision frame,
using the annotation for the relevant time stamp as the gold-standard label. In total,
the test corpus consisted of 361 instances: 233 labelled as NotSeekingEngagement,
and 128 labelled as SeekingEngagement.

We then trained each classifier from Table 2 on the full training corpus from the
previous study, and used each trained classifier to predict labels for every instance
in the test data. The results of this test are shown in Table 6, sorted by weighted
average F score. As shown by the groupings in the table, the results fell into three
broad categories: at the top, the hand-coded rule and the J28, CVR, and NaiveBayes
classifiers all had F scores well above the baseline ZeroR classifier, which always
chooses the highest-frequency label (NotSeekingEngagement); the LibSVM classifier
exactly reproduced the baseline ZeroR behaviour; while the JRip, Logistic, and IB1
classifiers all did worse than this baseline.

These results contrast strongly with the cross-validation results from Table 3.
Firstly, the overall numbers are much lower: while the top performing classifiers
from the previous study had scores well above 0.9 on all measures, the top results
in this study were in the range of 0.6–0.7. Also, the relative ordering of the classifiers
is very different: while the IB1 (instance-based) and JRip (rule learner) classifiers
did well on cross-validation, they were both among the lowest-performing classifiers
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(a) Customer not seeking engagement

(b) Customer seeking engagement

Fig. 5: Sample images from the test data

Table 6: Classifier performance on the test set, sorted by F score

Classifier Accuracy AUC Precision Recall F

Rule 0.681 na 0.694 0.681 0.687
J48 0.648 0.583 0.661 0.648 0.653
CVR 0.598 0.576 0.612 0.598 0.604
NaiveBayes 0.571 0.528 0.638 0.571 0.578

LibSVM 0.645 0.500 0.417 0.645 0.506
ZeroR 0.645 0.500 0.417 0.645 0.506

JRip 0.421 0.350 0.557 0.421 0.432
Logistic 0.438 0.329 0.390 0.438 0.411
IB1 0.349 0.341 0.388 0.349 0.363
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(a) Video 1

(b) Video 2

(c) Video 3

Fig. 6: Reference annotations and classifier predictions for three sample videos (yel-
low indicates NotSeekingEngagement, blue indicates SeekingEngagement)

on the test data; this suggests that these classification strategies may have ended up
over-fitting to the training data and did not generalise well. On the other hand, the
NaiveBayes classifier and the hand-coded rule—which were both near the bottom
on the cross-validation study—both scored at or near the top on the test data. Other
classifiers such as J48 (decision trees) and CVR (classification via regression) did
well in both studies; for this binary classification task, it is not surprising that these
classifiers—which are particularly suited to binary classifications—showed generally
good performance.

To better understand the performance of the classifiers, we inspected the classifier
output on each of the test-data videos. Figure 6 shows the gold-standard (reference)
annotation for three of the test videos, along with the labels produced by each classi-
fier on those same videos. The light yellow regions correspond to the frames labelled
with the NotSeekingEngagement class, while the dark blue regions correspond to the
SeekingEngagement class. The figure clearly suggests differences among the classi-
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Table 7: Mean engagement changes per classifier

Rule J48 CVR NaiveBayes LibSVM ZeroR JRip Logistic IB1 Gold

4.7 10.5 8.8 5.8 0.0 0.0 11.3 5.3 9.3 2.0

fiers: for example, the hand-coded rule selected SeekingEngagement very rarely; on
the other hand, the lowest-performing classifiers (JRip, Logistic, IB1) selected this
state frequently, even in cases where the customer never actually sought to engage
(e.g., Video 3).

Note also that even the best-performing classifiers changed their engagement es-
timate much more frequently than the gold standard. Table 7 shows the mean number
of engagement switches per test video produced by each classifier; with the exception
of the two classifiers which always select NotSeekingEngagement, all of the numbers
are well above the reference value of 2.0. Recall that in the online user study in Ex-
periment 3, stability was also an issue: the hand-coded rule changed its estimate an
average of 12.0 times per interaction, while the value for the IB1 classifier was 17.6.

8 Experiment 5: Adding temporal context with Conditional Random Fields

Although we used an HMM in the stand-alone study in Experiment 1—which im-
plicitly incorporates temporal context in its processing—for all of the subsequent
engagement studies, the input to the classifier consisted only of the sensor data at a
given instant, without taking into account any of the temporal context provided by the
interaction. However, real customers switch their engagement-seeking state relatively
infrequently, so—as noted at the end of the preceding section—classifying each input
frame independently tends to overestimate the number of engagement changes.

If an engagement classifier—even one with high overall accuracy—changes its
estimate too frequently, the job of the system’s interaction manager is made more
difficult, in that responding to every change in estimated state is likely to produce
undesirable behaviour. In an alternative, unsupervised, POMDP-based approach to
interaction management, this issue is addressed by making the POMDP “sticky”;
that is, biasing it towards self-transitions (Wang and Lemon 2012). As an initial effort
to address this issue in the current context, we experimented with various methods
of incorporating information from previous frames into the state used to train the
supervised classifiers; however these modifications were not found to improve either
the stability or the performance of the classifiers (see (Foster 2014) for details of these
experiments).

Instead, we address this issue by turning to a completely different classification
model: Conditional Random Fields (CRFs) (Lafferty et al 2001; Sutton and McCal-
lum 2006), which are probabilistic graphical models particularly suitable for seg-
menting and labelling sequence data such as the user-engagement data considered
in this paper. In particular, for these experiments, we have used the freely-available
CRF implementation CRFSuite (Okazaki 2007). Just as we did in the previous stud-
ies with Weka, we used CRFSuite in its default configuration: a first-order Markov
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Table 8: Cross-validation results for CRF

Classifier Accuracy Precision Recall F

IB1 0.954 0.954 0.954 0.954
J48 0.928 0.925 0.928 0.928
ZeroR 0.780 0.609 0.780 0.684
Hand-coded rule 0.655 0.635 0.654 0.644
CRF 0.589 0.606 0.627 0.503

Table 9: CRF performance on the test set

Classifier Accuracy Precision Recall F Changes

Hand-coded rule 0.681 0.694 0.681 0.687 4.7
J48 0.648 0.661 0.648 0.653 10.5
CRF 0.615 0.614 0.624 0.606 1.0
ZeroR 0.421 0.557 0.421 0.432 0.0
IB1 0.349 0.388 0.349 0.363 9.3

CRF, trained through gradient descent using the L-BFGS method (Zhu et al 1997).
To make the data suitable for use by CRFSuite (which does not deal with continuous
attributes), we first rounded all locations in the training and test data to the nearest
50mm, and all body-orientation values to the nearest degree. Rounding parameters
were chosen to provide good discrete approximations of the continuous data.

To test the performance of the CRF model for the current engagement classifi-
cation task, we carried out the same studies as on the supervised Weka classifiers in
Experiments 2 and 4: 5-fold cross-validation against the training corpus, and eval-
uation against the separately recorded test data. The results of the cross-validation
study are presented in Table 8; the results from the IB1, J48 and ZeroR classifiers
and the hand-coded rule are repeated from Table 3 for context. Note that a paired T
test found a significant difference at the p < 0.01 level between the accuracy scores
of all classifiers in this table. Clearly, the cross-validation performance of the CRF is
much lower than that of the previous classifiers, including the hand-coded rule; but
as noted earlier, this measure itself does not necessarily reflect the practical utility of
a classifier for the current task.

We then developed a CRF model based on the full training corpus and tested its
performance on the test data; the results of this study are presented in Table 9, again
with the results for the IB1, ZeroR and J48 classifiers and the hand-coded rule re-
peated for context. Here, the advantages of using a CRF rather than a frame-by-frame
classifier are becoming clearer: the CRF accuracy, precision, recall, and F score on
this test set are all comparable to those of the hand-coded rule and the best-performing
trained classifiers such as J48.

Finally, we revisit the main motivation for exploring a temporal classifier such as
CRF in the first place: does using this sort of sequence model improve the overall sta-
bility of the classifier? Based on the performance on the test data (included in the final
column of Table 9), the answer is clearly yes: in contrast to the previous classifier,
the CRF classifier changed its estimate of the user’s engagement state an average of
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(a) Video 1

(b) Video 2

(c) Video 3

Fig. 7: Reference annotations and CRF predictions for three sample videos (yellow
indicates NotSeekingEngagement, blue indicates SeekingEngagement)

1.0 times per video across the test set—recall that the number from the gold-standard
data was 2.0. The CRF output on the same three gold-standard (reference) videos is
shown in Figure 7. While the predictions are obviously not perfect—especially on
Video 3—the overall pattern is closer to realistic, and is much more stable than that
of any of the previous classifiers.

9 Summary, conclusions, and future work

In the context of real-world human-robot joint action, a crucial task is to understand
the social states of every person in the dynamic, changing scene. We have discussed
the role of user engagement detection in the context of the JAMES robot bartender,
and have shown how understanding the intended engagement of the customers is vital
to supporting socially appropriate joint action in this bartender context.

We have then summarised our efforts in engagement detection in the context of
this particular social HRI scenario. We began with a proof-of-concept study using
HMMs to estimate user state based on a small corpus of specially-recorded training
data (Experiment 1). In the light of the subsequent experiments, we can draw two
main conclusions from this study. First, the visually recognized attributes available in
this human-robot interaction scenario allow, in principle, classification into a larger
set of user states. Of course, larger numbers of states would require more high-quality
training data with perfectly recognized head poses, which is difficult to collect with
uninformed customers that are not familiar with the limitations of the depth camera.
Second, the HMM experiment confirms that the attribute selection of head pose and
body posture features is necessary to classify user engagement in the bartender sce-
nario, independently from related human-human studies (Huth et al 2012; Loth et al
2013, 2015) and the newer classifiers defined in Section 5.

Next, we have described two approaches to the task of online estimation of cus-
tomers’ intended engagement: the first version used a hand-coded rule based on find-
ings from annotated human behaviour in real bars, while for the second version, we
trained a range of supervised-learning classifiers using a multimodal corpus derived
from user interactions with the initial system. In a cross-validation study using real
sensor data (Experiment 2), nearly all of the trained classifiers significantly outper-
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formed the hand-coded rule. The best-performing classifier in terms of accuracy was
the instance-based IB1 classifier, which had an overall accuracy of 0.954 in frame-
based cross-validation. When we carried out feature selection, it was found that the
most informative features were the 3D position of the customer’s head, along with
some of the coordinates of their hands; body orientation—which was one of the two
features used by the rule-based classifier—was actually not informative based on the
corpus data, which we hypothesise was mainly due to the noisiness of this signal in
the vision data used for training.

In an online user study (Experiment 3) comparing the rule-based classifier with
the top-scoring IB1 classifier in the context of the full robot bartender system, we
found one main difference between the two classifiers: namely, the trained classifier
changed its estimate of the customers’ engagement state significantly more often over
the course of an interaction than did the rule-based classifier, suggesting that the for-
mer is less stable in practice. However, due to the details of the user experiment, these
results have some limitations: in particular, the gold-standard engagement data was
not available, and in any case the scenario would have led to very few true negative
testing instances.

To address these limitations, we then carried out a targeted evaluation (Exper-
iment 4) of the classifiers using a corpus of separately recorded, fully annotated,
more balanced test data, and found that the relative performance was different. In the
cross-validation study, the instance-based IB1 classifier had the highest performance
and the hand-coded rule the lowest. On this study, we found instead that the J48
decision-tree classifier gave the best estimate of the users’ engagement state, while
the hand-coded rule actually had the overall best performance. We suspect that this
result may also have been influenced by the noisy body orientations in the training
data, particlarly when contrasted with higher-quality body orientation detection in the
test data.

In all cases, and across all of Experiments 2–4, even the top-performing classifiers
changed their estimate of the customers’ engagement state much more frequently than
the gold standard, likely because they all operate by classifying individual sensor data
frames. To address this issue, we used the same data to train a classification model
based on Conditional Random Fields, which are explicitly designed for sequence
labelling problems of this type. The cross-validation results for the CRF were not as
high as those for the previous frame-level classifiers; however, the overall stability of
the classifier was much better, indicating that this sort of sequence model is a fruitful
future direction for this classification task.

In summary, the main conclusion that we can draw from these studies is that,
while data-driven methods can be useful for this engagement classification task, care
must be taken in several areas. First of all, we have confirmed the message from
Bohus and Horvitz (2009b) that online, run-time evaluation is crucial for evaluat-
ing any classifier for this task: the results from offline, frame-by-frame evaluation
may not be indicative of online performance. Also, we have found that using a CRF,
which explicitly incorporates the temporal sequence information, shows comparable
frame-level performance to the frame-level classifiers but also greatly improves the
overall stability of the classification. Even though the performance of all classifiers
was likely affected by the noisy body orientation information from the training data,
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the stability difference with the CRF was so dramatic that it still seems that this is a
better classification strategy.

Perhaps most importantly, we must also point out that the performance of the
hand-coded, rule-based classifier—which used an extremely simple rule derived from
the observation of human performance—was competitive with that of the highest-
scoring trained classifiers in all of the experiments. While this may not be the case
for every audiovisual processing task, this result does remind researchers to consider
such simpler, easier to implement models, particularly if training data may be missing
or of potentially uncertain quality.

Regarding future work, we first note that in all of the classification studies, we
have made a deliberate choice to treat all of the classifiers as “black boxes”, in all
cases using the default parameter settings provided by the tools (Weka and CRF-
Suite, respectively). This is a similar approach to that taken, for example, by Koller
and Petrick (2011), who compared the off-the-shelf performance of a number of AI
planners when applied to tasks derived from natural language generation. However,
it is certain that the relative and absolute performance could be significantly affected
by appropriate parameter tuning (Lavesson and Davidsson 2006), and in future we
will explore the space of parameters more fully.

Another direction for future work is to explore methods for making improved
use of the classifier output in the context of end-to-end interactions with the robot
bartender. In particular, where the classifier provides not only a class, but also an
estimated confidence in that class, that additional information can be incorporated
into the state and used in the interaction. Indeed, the state representation used by the
final JAMES bartender system retains and exploits the uncertainty coming from the
underlying input sensors to improve interactive performance (Foster et al 2014; Foster
and Petrick 2014). The use of classifiers such as J48 and CRFs—which provide such
confidence estimates—could also prove useful in this context.

The anonymised, annotated training and test corpora from Experiments 2–5 are
available for download from http://downloads.maryellenfoster.uk/, and we
encourage other researchers to test their models on this data.
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